

6

APPLICATION OF DERIVATIVES

KEY CONCEPTS INVOLVED

1. Rate of change of Quantities – Let y = f(x) be a function. If the change in one quantity y varies with

another quantity x, then $\frac{dy}{dx}$ or f'(x) denotes the rate of change of y with respect to x. $\frac{dy}{dx}\Big]_{x=x_0}$

or f' (x₀) represents the rate of change of y w.r.t. x at $x = x_0$.

2. Increasing and Decreasing function at \mathbf{x}_0 A function f is said to be

(a) Increasing on an interval (a, b) if $x_1 < x_2$ in (a, b) $\Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in (a, b)$

- Alternatively, if $f'(x) \ge 0$ for each x in (a, b)
- (b) Decreasing on (a, b) if $x_1 < x_2$ in (a, b) $\Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in (a, b)$ Alternatively, if $f'(x) \le 0$ for each x in (a, b)
- **3.** Test : Increasing/decreasing/constant function Let f be a continuous on [a, b] and differentiable in an open interval (a, b), then.
 - (i) f is increasing on [a, b], if f' (x) > 0 for each $x \in (a, b)$
 - (ii) f is decreasing on [a, b], if f' (x) < 0 for each $x \in (a, b)$
 - (iii) f is constant on [a, b], if f' (x) = 0 for each $x \in (a, b)$
- 4. Tangent to a Curve Let y = f(x) be the equation of a curve. The equation of the tangent at (x_0, y_0) is $y y_0 = m (x x_0)$, where m = slope of the tangent $= \frac{dy}{dx} \Big|_{(x_0, y_0)}$ or $f'(x_0)$
- 5. Normal to the Curve Let y = f(x) be the equation of the curve Equation of the normal at (x_0, y_0) is

where

$$\begin{aligned} \mathbf{y}_{0} &= -\frac{\mathbf{y}_{0}}{\mathbf{m}} (\mathbf{x} - \mathbf{x}_{0}) \\ \mathbf{m} &= \text{Slope of the tangent at } (\mathbf{x}_{0}, \mathbf{y}_{0}) \\ &= \frac{d\mathbf{y}}{d\mathbf{x}} \Big]_{(\mathbf{x}_{0}, \mathbf{y}_{0})} \text{ or } \mathbf{f}'(\mathbf{x}_{0}) \end{aligned}$$

6. Approximation – Let y = f(x), Δx be a small increament in x and Δy be the increament in y corresponding

to the increament in x, i.e., $\Delta y = f(x + \Delta x) - f(x)$. Then approximate value of $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$

7. Maximum Value, Minimum value, Extreme Value – Let f be a function defined in the interval I, then
(i) Maximum Value – If there exists a point c in I such that f (c) ≥ f (x), for all x ∈ I then f (c) is called maximum value of f in I. The point c is known as a point of maximum value of f in I.

(ii) **Minimum Value** – If three exists a point c in I such that $f(c) \le f(x)$, $\forall x \in I$, then f(x) is called the minimum value of f in I. The point c is called as a point of minimum value of f in I

(iii) Extreme Value – If there exists a point c in I such that f(c) is either a maximum value or a minimum value of f in I, then f (c) is the extreme value of f(x) in I.The point c is said to be an extreme point.

8. Absolute Maxima and Minima – let f be a continuous function on an interval I = [a, b]. Then f has the absolute maximum value and f attains it at least once in I. Similarly, f has the absolute minimum value and attains at least once in I

At x = b, there is a local minima

At x = c, there is a local maxima

At x = a, f (a) is the greatest value or absolute max. value.

At x = d, f (d) is the least value or absolute min. value.

- **9.** Local Maxima and Minima let f be a real valued function and c be an interior point in the domain of f, then
 - (a) Local Maxima c is a point of local maxima if there is an h > 0, such that $f(c) \ge f(x)$ for all $x \in [c-h, c+h)$

The value f(c) is called local maximum value of f.

(b) Local Minima – c is a point of local minima if there is an h > 0, such that f (c) ≤ f (x) for all x ∈ (c − h c + h)

The value of f(c) is known as the local minimum value of f.

Geometrically – If x = c is a point of local maxima of f, then

f is increasing (i.e., f'(x) > 0) in the interval (c – h, c) and decreasing (i.e., f'(x) < 0) in the interval (c, c + h) \Rightarrow

f'(c) = 0

Similarly, if x = c is a point of local minima of f, then f is decreasing (i.e., f'(x) < 0) in the interval (c-h, c) and increasing (i.e., f'(x) > 0) in the interval (c, c+h).

$$\Rightarrow$$
 f'(c)=0

- 10. Test of Local Maxima and Minima -
 - (i) Let f be a differentiable function defined on an open interval I and $c \in I$ be any point. f has a local maxima or a local minima at x = c, f' (c) = 0

(ii) If f'(x) changes sign from positive to negative as x increases from left to right through c i.e., (a) f'(x) > 0 at every point in (c - h, c)

(b) f'(x) < 0 at every point in (c, c+h)

Then c is called a point of local maxima of f and f (c) is local maximum value of f.

(iii) If f'(x) changes sign from negative to positive as x increase from left to right through c i.e.,

(a) f'(x) < 0 at every point in (c-h, c)

(b) f'(x) > 0 at every point in (c, c + h)

Then c is called a point of local minima of f and f (c) is a local minimum value of f.

- (iv) If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Such a point is called point of inflection.
- Second Derivative Test of Local Maxima and Minima let f be a twice differentiable function defined on 11. an interval I and $c \in I$ and f be differentiable at $c \in I$, then,
 - (i) x = c is a local maxima,
 - if f'(c) = 0 and f''(c) < 0.
 - f (c) is the local maximum value of f
 - (ii) x = c is a local minima, if f'(c) = 0 and f''(c) > 0
 - f (c) is the local minimum value of f.

(iii) Point of inflection If f'(c) = 0 and f''(c) = 0

Test fails. Then we apply first derivative test and find whether c is a point of local maxima, local minima or a point of inflexion.

12. To find absolute maximum value or absolute minimum value -

- (i) Find all the critical points where f'(x) = 0
- (ii) Consider the end point also.
- (iii) Calculate the functional values at all the points found in step (i) and (ii)
- (iv) Identify the maximum and minimum values out of the values calculated in step (iii). These are absolute maximum and absolute minimum values.

CONNECTING CONCEPTS

1. Increasing Function – f is said to be increasing on I, if $x_1 < x_2$ on I, then $f(x_1) \le f(x_2)$. for all $x_1, x_2 \in I$.

2. Strictly Increasing function – f is said to be strictly increasing on I, if $x_1 < x_2$ in I then $f(x_1) < f(x_2)$ for all $x_1, x_2 \in I$.

3. Decreasing function – f is said to be decreasing function on I, if $x_1 < x_2$ in I, then $f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in I$.

4. Strictly Decreasing function – f is said to be strictly decreasing function on I, if $x_1 > x_2$ in I then $f(x_1) > f(x_2)$ for all $x_1, x_2 \in I$.

Particular case of tangent – Let $m = tan \theta$ 5. If $\theta = 0, m = 0$ Equation of tangent is $y - y_0 = 0$ i.e., $y = y_0$ If $\theta = \frac{\pi}{2}$, m is not defined. \therefore $(x - x_0) = \frac{1}{m}(y - y_0)$ when $\theta = \frac{\pi}{2}$, cot $\frac{\pi}{2} = 0$ \therefore Equation of tangent is $x - x_0 = 0$ or $x = x_0$