8

APPLICATION OF THE INTEGRALS

KEY CONCEPT INVOLVED

Area Under Simple Curves

1. Let us find the area bounded by the curve $y=f(x), x-a x i s$ and the ordinated $x=a$ and $x=b$. Consider the area under the curve as composed of large number of thin vertical strips let there be an arbitary strip of hieght y and width dx . Area of elementary strip $\mathrm{dA}=\mathrm{ydx}$, where $\mathrm{y}=\mathrm{f}(\mathrm{x})$. Total Area A of the region between x -axis.ordinated $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ and the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})=$ Sum of areas of elementry thin strips across the region PQML

$$
A=\int_{a}^{b} d A=\int_{a}^{b} y d x=\int_{a}^{b} f(x) d x
$$

2. The area A of the region bounded by the curve $x=g(y), y$-axis and the lines $y=c$ and $y=d$ is given by $A=\int_{c}^{d} x d y$

3. If the curve under consideration lies below x -axis, then $\mathrm{f}(\mathrm{x})<0$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$, the area bounded by the curve $y=f(x)$, and the ordinates $x=a, x=b$ and x-axis is negative. But the numerical value of the area is to be taken into consideration.Then Area $=\left|\int_{a}^{b} f(x) d x\right|$

4. Let some portion of the curve is above x -axis and some portion is below x -axis. Let A_{1} be the area below x-axis and A_{2} be the area above of x-axis. Therefore Area bounded by the curve $y=f(x), x$-axis and the ordinates $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.

$$
\mathrm{A}=\left|\mathrm{A}_{1}\right|+\mathrm{A}_{2}
$$

Area between Two curves

5. Let the two curves be $y=f(x)$ and $y=g(x)$. Suppose these curves intersect at $x=a$ and $x=b$. Consider the elementary strip of height y where $y=f(x)-g(x)$ with width $d x$

$\therefore \quad \mathrm{da}=\mathrm{ydx}$
$\Rightarrow \quad A=\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$
i.e. $A=$ Area bounded by the curve $y=f(x)-$ Area bounded by the curve $y=g(x)$
6. If the two curves $y=f(x)$ and $y=g(x)$ intersects at $x=a, x=c$ and $x=b$ such that $a<c<b$. If $f(x)>g(x)$ in [a, c] and $f(x)<g(x)$ in [c, b], Then the area of the regions bounded by curve.

$=$ Area of the region PAQCP + Area of the region $Q D R B Q=\int_{a}^{c}(f(x)-g(x)) d x+\int_{c}^{b}(g(x)-f(x)) d x$
