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Exercise 5.1

Question 1:

x)=5x-3 —3andatx =5,

Prove that the function”’ ( is continuous at* = (-3t ¥ =

Answer

The given function is,,i"'{x) =5x-3
Atx=0,f(0)=5%x0-3=3

|Ll_l"llllf(.\‘.'}= lim (5x-3)=5x0-3=-3

s lim f'(x)= £ (0)

Therefore, fis continuous at x = 0
Atx=-3,f(-3)=5%(-3)-3=-18
Ill_i{n]f{_r] = .Tliml(ﬁx—ﬂ =5x(-3)-3=-18

s lim f(x)= f(-3)

Therefore, f is continuous at x = -3

Atx =35, f(x)= f(5)=5%x5-3=25-3=22
llin'}f(x}= lim (5x-3)=5x5-3=22

s lim f(x) = £(5)

Therefore, fis continuous at x = 5

Question 2:

Examine the continuity of the function J {T} =2v —latx=3 .

Answer

The given function is f(x) = 2x" -1
Atx=3,f(x)= f(3)=2x3-1=17
lim f(x) =lim(2x" ~1) =2x3* ~1=17

Llim £ (x)= £ (3)

Thus, fis continuous at x = 3
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Examine the following functions for continuity.

X—=2

1
TR T _f'{x}=—,x#5
(@) 1 ()=2=5 5

(c)

Answer

fx)=x-5

(@) The given function is"
It is evident that f is defined at every real humber k and its value at k is kK — 5.
lim f(x)=lim{x-5)=k-5=f(k
It is also observed that, ** ' H*( ! { }
s lim f(x) = 1 (k)
Hence, fis continuous at every real number and therefore, it is a continuous function.
., 1
flx)=——,x25
(b) The given function is x—=3

For any real number kK # 5, we obtain

. . 1 1
.ll-ﬂf(r}_ L ¥—5 k-5

| )
Also, fk)=—— As k=3

s lim j'{x']=f{k)
I—wE d
Hence, fis continuous at every point in the domain of f and therefore, it is a continuous

function.

_ x- =25 -
_f{x}:r X #E=5
(c) The given function is X+35

For any real number ¢ # -5, we obtain
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- r+5)(x—3
i 7 (1) =tim 2 i D) i a9 (-9
+5)c-35
Also, f(c)= (e+3)(c }—'[c—ﬁ) (as ¢ #-5)

c+3
< lim f[x} :j'{c']
Hence, fis continuous at every point in the domain of f and therefore, it is a continuous

function.

f{x_]:|x—:'~|:{""“' e
(d) The given function is x=31tx23
This function f is defined at all points of the real line.

Let c be a point on a real line. Then,c<50rc=50rc>5
Casel:c<5

Then, f(c)=5-c¢

lim f(x)= thL{S ~x)=5-¢

< lim flx)=flc)

Therefore, fis continuous at all real numbers less than 5.
Casell:c=5

rren, (€)= 1(5)=(5-5)=0

I_iryf{x} = El_l;f}{‘?—::.} =(5-5)=0

lim f(x) = lim(x~5)=0
s lim f(x)=lim f(x)= f(c)

Therefore, fis continuous at x = 5

CaseIll: ¢ > 5

Then, [ (c)= f(5)=c-5

lim / (x) = lim (x~5) = =5

~lim f(x)= f(c)

Therefore, fis continuous at all real numbers greater than 5.

Hence, fis continuous at every real number and therefore, it is a continuous function.
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. (x)=x". . . - .

Prove that the function "f{ ) is continuous at x = n, where n is a positive integer.
Answer

The given function is f (x) = x”

It is evident that f is defined at all positive integers, n, and its value at n is n".

Then, lim f(n)=lim(x" )= n"

X—n X—*n

sim f(x)= f(n)

a— R

Therefore, fis continuous at n, where n is a positive integer.

Is the function f defined by
flx x, ifx=l

X)l=
' ) 5, ifx =1

continuous at x = 0? At x = 1? At x = 2?

Answer
ow | ifx =l
F()=15 ifx>1
The given function fis .
Atx =0,

It is evident that f is defined at 0 and its value at 0 is O.

Then, Iirrllp f(x)= limx=0

a—+l

sim f(x) = 1(0)

Tl
Therefore, fis continuous at x = 0
Atx =1,
fis defined at 1 and its value at 1 is 1.
The left hand limit of fat x = 1 is,

lim f(x)=limx=1

x—+l

The right hand limit of fat x = 1 is,
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lim f(x)=1lim(5)=5

K=l ]

lim () # lim (3

Therefore, fis not continuous at x = 1
At x = 2,

fis defined at 2 and its value at 2 is 5.

Then, lim flx)= Ii_]p{S} =5
slim £ (x) = £(2)

Therefore, fis continuous at x = 2

Find all points of discontinuity of f, where f is defined by
, 2y 43, ifxr=2
flx)= ,
2x =3, ifx=2
Answer

. 2x+3, ifx=2
f(x)

The given function fis 1233, ifx>2

It is evident that the given function f is defined at all the points of the real line.
Let c be a point on the real line. Then, three cases arise.

(c<2

(i) c>2

(i) c = 2

Case (i)c < 2

Then, f(¢)=2c+3

lim f(x)= ]L_ir'n_ (2x+3)=2c+3

lim £ (x) = (e)
Therefore, fis continuous at all points x, such that x < 2

Case (ii)c > 2
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Then, f(¢)=2c-3
lim £ (x) = lim (2~ 3) = 2¢ -3
sim f(x)=1(e)

Therefore, fis continuous at all points x, such that x > 2
Case (iii) c =2
Then, the left hand limit of fat x = 2 is,

lim fx)= lim (2x+3)=2x2+3=7

The right hand limit of fat x = 2 is,
lim f(x)=lim(2x-3)=2x2-3=1

It is observed that the left and right hand limit of f at x = 2 do not coincide.
Therefore, fis not continuous at x = 2

Hence, x = 2 is the only point of discontinuity of f.

Find all points of discontinuity of f, where fis defined by
|x|+3,ifx <=3
flx)=9-2x,if -3<x<3

Gx+2,ifx=3

Answer
x|+3=—x+3. ifx=<-=3
_f'l[x}= =2x, if-3<x<3

bx+2, ifx=z3
The given function fis

The given function fis defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <3, then f(c)=—c+3

lim f(x)=lim(-x+3)=—c+3

]I_illt;l flx)=f(c)
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Therefore, fis continuous at all points x, such that x < -3

Case II:
If ¢ =3, thenf(-3)=—(-3)+3=6

lim f(x)= lim (~x+3)=—(-3)+3=6

x—+-13 i3

lim f(x)= lim (-2x)=-2x(-3)=6

s lim f(x)=f(-3)
Therefore, fis continuous at x = -3
Case III:

If —3<c¢<3, thenf(c)=—2¢and lim f(x)=lim(-2x)=-2¢

e T

sim f(x)=1(e)

Therefore, fis continuous in (=3, 3).

Case 1V:

If c = 3, then the left hand limit of fat x = 3 is,
lim flx)= lim (-2x)=-2x3=-6

The right hand limit of fat x = 3 is,

lim f(x)= !Lm (6x+2)=6x3+2=20

A—*S

It is observed that the left and right hand limit of f at x = 3 do not coincide.
Therefore, fis not continuous at x = 3

Case V:

If ¢ >3, then f(c)=6c+2 and lim f(x)=lim(6x+2)=6c+2

s lim f(x) =/ (e)

Therefore, fis continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

Find all points of discontinuity of f, where fis defined by
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m ifx=0
flx)=1x
0,1fx=0
Answer
|
: Liafx=10
flx)=1x
0, 1fx=0

The given function fis

It is known that, ¥ 0=|x=-xandx>0=|x]=x

Therefore, the given function can be rewritten as

|'i|—_—"——1if.r<u
xX X

fx)=40,ifx=0
H=£=l, ifx=0
X X

The given function fis defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If e <0, then f(c)=-1
1;"?-1"[.(*'(}: lim{—1}= -1

X—*C

sim f(x)= 1 (c)

K=o

Therefore, fis continuous at all points x < 0

Case II:

If ¢ = 0, then the left hand limit of fat x = 0 is,
lim f(x)=lim(-1)=—1

x—{} . )

The right hand limit of fat x = 0 is,
lim f{x)=lim(1)=1
x—" f { ] .l.—:le'( ]

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, fis not continuous at x = 0
Case III:
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If ¢ >0, then f(c)=1
lim f(x)=lim({1)=1

X

X—C

sim f(x)=1(e)

K=

Therefore, fis continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

Find all points of discontinuity of f, where fis defined by

(%)=

Answer

The given function fis

It is known that,

Ji ifx<0

"
[

l—l, ifx>0

Ji, ifx<0

x

fm:l—l, ifx>0

x<0=|x =—x

Therefore, the given function can be rewritten as

f(x)=

X _ X
 —

=1, ifx =10

=-1,ifx =<0

L]

= f{x}=—| forallxeR

lim f(x)=1lim(-1)=-1

Let c be any real number. Then, *—* ro

Als

fle)=-1=lim f(x)
o, pare

Therefore, the given function is a continuous function.

Hence,

the given function has no point of discontinuity.

Find all points of discontinuity of f, where fis defined by
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_ x+1 ifxzl
O .
L_r‘ +1,ifx <1
Answer
_ x+1 ifxzl
d {'szjl:r3+l ifx<l
The given function fis ’ » BAS

The given function fis defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:

If ¢ <1, then (¢} =c¢” +1and lim f(x)=lim(x* +1)=¢* +1
clim f(x) = f(e)

Therefore, fis continuous at all points x, such that x < 1

Case II:

Ife=1, thenf(c)=f(1)=1+1=2

The left hand limit of fat x = 1 is,

lim f(x)= I]m(x: + I} =1"+1=2

x—»| ]

The right hand limit of fat x = 1 is,
lim Sfx)= !irﬂ{x+ )=1+1=2
im S (x) = £(1)

Therefore, fis continuous at x = 1
Case III:

Ifc>1, thenf(c)=c+]

lim f(x)=lim(x+1)=c+1

slim f(x)=1(e)

K=

Therefore, fis continuous at all points x, such that x > 1

Hence, the given function f has no point of discontinuity.

Find all points of discontinuity of f, where fis defined by
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=3, ifx<2

/(%) ={

x L ifx =2

Answer

/(x) ={ ¥ -3, ifx<2

The given function fis X+, ifx>2

The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:

Ife <2, thenf(¢)=¢’ =3 and lim f(x)=lim(x"-3)=¢’ -3

X—w

sim f(x)= 1 (c)

K=o

Therefore, fis continuous at all points x, such that x < 2

Case II:
Ife=2, thenf(c)= f(2)=2"-3=5

lim £(x)=lim(x'-3)=2"-3=5
lim f(x)= lim (%’ +1] =2 +1

2!

I'm! fx)=1(2)

5

Therefore, fis continuous at x = 2
Case III:

Ife>2, thenf(c)=c"+1

lim £ (x) = lim (x* +1) = c* +1

s lim f (x)= f(c)
Therefore, fis continuous at all points x, such that x > 2
Thus, the given function f is continuous at every point on the real line.

Hence, f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by

Page 11 of 144

Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers



& eVidyarthi

FREE Education
Class XII Chapter 5 - Continuity and Differentiability Maths
-1, ifx <l
flx)=14 . T
{ ] X, ifx=1
Answer

f'[—*]={¥i“"s ifx<1

The given function fis X ifx=1

The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:
Ife <1, then f(¢)=c"~1and lim f (x)=lim(x" ~1)=¢" -1
<. lim f(x)=1(c)

Therefore, fis continuous at all points x, such that x < 1

Case II:
If c = 1, then the left hand limit of fat x = 1 is,
lim f (x) = lim (x" =1)=1"-1=1-1=0

Xl ’

The right hand limit of fat x = 1 is,
lim f (x)=lim(x)=1" =1
K=l !

=l

It is observed that the left and right hand limit of f at x = 1 do not coincide.
Therefore, fis not continuous at x = 1

Case III:

Ife =1, thenf(c)= e

lim f(x)= ]i[ll{.r:) = ¢

sim f(x)= 1 (c)
Therefore, fis continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.

Is the function defined by
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. x+5 ifx <]
flx)= .
x=5 ifx=1
a continuous function?
Answer
7(x) x+5 ifx <
xX)=
x=5 ifx =1

The given function is.
The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:

Ife <1, thenf(c)=c+5and lim f'(x)=lim(x+5)=c+35

r—*0 T

sim f(x)= 1 (c)

K=o

Therefore, fis continuous at all points x, such that x < 1
Case II:

Ifc=1, thenf(1)=1+5=6

The left hand limit of fat x = 1 is,

lim fx)= lim (x+ 5)=1+5=6

The right hand limit of fat x = 1 is,

lp £ ()= 1 35) =158

It is observed that the left and right hand limit of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1
Case III:

If ¢ >1, thenf(¢)=c—5and lim f(x)=lim(x-5)=¢-5

r—*C T—*

sim f(x)=1(e)

Therefore, fis continuous at all points x, such that x > 1
Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.
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Discuss the continuity of the function f, where f is defined by

3, if0=x<1
flx)=44,ifl<x<3
5 if3<x=10
Answer
3, if0=sx<1
fx)=14, if l<x<3
5 if3=x<10

The given function is
The given function is defined at all points of the interval [0, 10].
Let c be a point in the interval [0, 10].

Case I:
fo<e<l, lhen_f'l:c‘) =3and lim f l:r) =lim [3] =3
]im_f'[x} =_f'(c}
Therefore, fis continuous in the interval [0, 1).
Case II:
If e =1, thenf(3)=3
The left hand limit of fat x = 1 is,
im /(x) = lim(3)=3
]1_[1|1 S(x)=1im(3)

x—l

The right hand limit of fat x = 1 is,

lim f(x)=lim(4)=4

x| =l

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, fis not continuous at x = 1
Case III:

If 1< ¢ <3, thenf(c)=4 and !rlr31f{r) = {It;n(—‘] =4

s lim f(x) = f(¢)

Therefore, fis continuous at all points of the interval (1, 3).
Case IV:

If ¢ =3, thenf(c)=35
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The left hand limit of fat x = 3 is,

fim /()= Jim(4)=4

The right hand limit of fat x = 3 is,

lim /()= im () =3

It is observed that the left and right hand limits of f at x = 3 do not coincide.

Therefore, fis not continuous at x = 3
Case V:

If 3<¢ <10, thenf(c) =35 and lim f(x)=lim(5)=5

lim £ (x)= 1 (c)

Therefore, fis continuous at all points of the interval (3, 10].

Hence, fis not continuous at x =1 and x = 3

Discuss the continuity of the function f, where f is defined by

2x, ifx<0
fx)=40, if0<x<]
dx, ifx>1
Answer
2x, ifx <0
fx)=40, if0<x<l]
dx, ifx>1

The given function is
The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I

If ¢ <0, then f (c)=2¢
im 7 (x)=lim(22) = 2¢
|]lTI flx)=r(e)

Therefore, fis continuous at all points x, such that x < 0
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Case II:
If e =0, thenf(c)=/(0)=0
The left hand limit of fat x = 0 is,
i " = i j = =
I|'r;r|1 f(x) ]Lm (2x)=2x0=0
The right hand limit of fat x = 0 is,
r/ (x)= i (0)=0
lim /()= £(0)
Therefore, fis continuous at x = 0
Case III:

fl<e<l, then_}"(x} =0and lim f(x} = Iim{[}} =1

s lim f(x) = f(¢)

Therefore, fis continuous at all points of the interval (0, 1).
Case IV:

Ife=1, then f(c)=f(1)=0

The left hand limit of fat x = 1 is,

lim f(x)=1lim(0)=0

s+l x—l

The right hand limit of fat x = 1 is,

lim f(x) = lim (4x)=4x1=4

K=l K=l

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, fis not continuous at x = 1
Case V:

Ifc <1, thenf[c'] =4¢ and lim f {r) = l_in;(rix} =dc
s lim £ (x) = £ ()

Therefore, fis continuous at all points x, such that x > 1

Hence, fis not continuous only at x = 1

Discuss the continuity of the function f, where f is defined by
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=2 ifx=-1
fx)=12x, if —-1<x <]
|2, ifx=1
Answer
=2, ifx=-1
flx)=12x if —-1<x<]
|2, ifx=1

The given function fis
The given function is defined at all points of the real line.
Let ¢ be a point on the real line.

Case I:

If ¢ <—1, then f(¢)=-2 and [_ir'r‘q_f{x}: ]l-irP-[ 2)==2

= lim £ (x) = £ (c)

Therefore, fis continuous at all points x, such that x < -1
Case II:

Ife=—1, thenf(c)= f(-1)=-2

The left hand limit of fat x = —1 is,
li x)=lim (-2)=-2

fim £(x)= fim (-2)

The right hand limit of fat x = -1 is,

Jim, £(x)= lim,(2x)=2x(1)=-2

l_imlf[.t}:f{—]}
Therefore, fis continuous at x = —1
Case III:

If —-1<c<l, thcnf{c'] 2c

lim / (x) = lim (2x) = 2¢

sim f(x)= fe)

Therefore, fis continuous at all points of the interval (-1, 1).
Case IV:
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Ife=1, thenf(c)=f(1)=2x1=2
The left hand limit of fat x = 1 is,
lim flx)= !i_{]ll{z.r] =2x1=2

The right hand limit of fat x = 1 is,
i /(x)=lip 22

sim f(x)=1(e)

a—xl
Therefore, fis continuous at x = 2
Case V:

If ¢ >1, thenf(c) =2 and lim £ (x) =lim(2) =2

lim £ (x)= 1 (c)

Therefore, fis continuous at all points x, such that x > 1
Thus, from the above observations, it can be concluded that f is continuous at all points

of the real line.

Find the relationship between a and b so that the function f defined by
. ax+1, ifx<3
flx)= - 9
he+3, ifx=3
is continuous at x = 3.
Answer

f(x)

{ax+], ifx=3
The given function fis

bre+3, ifxr=3

If fis continuous at x = 3, then
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lim f(x)=lim £ (x)=£(3) (1)
N3 ¥—»3
Also,

!Eﬂ fx)= !ﬂ“ (ax+1)=3a+1
|Lnl fx)= !]_{]l (bx+3)=3h+3
:,I"li?r]l = 3(F+.| |

Therefore, from (1), we obtain
da+1=3b+3=3a+l

= 3a4+1=3h+3
—=3g=3h+2

2
=a=h+—
3

2
a=h+=
Therefore, the required relationship is given by,

Question 18:
For what value of A is the function defined by

flx)=

A(x'—2x), ifx<0
dx+1, ifx=0

continuous at x = 0? What about continuity at x = 1?

Answer

_ Alx* =2x), ifx<0
flx)= ( )
dx+1, iflx=0

The given function fis
If fis continuous at x = 0, then
lim £ (x) = lim f(x)=£(0)

. 3 A » . ) _ o B
= !]T /1,{.1 H_r] 1121 (4x+1) A{ﬂ Exﬂ}
= A(07-2x0)=4x0+1=0
= 0 =1=10. which is not possible

Therefore, there is no value of A for which fis continuous at x = 0
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Atx =1,
fF(l)=4x+1=4x1+1=5
lim(4x+1)=4x1+1=5

T—ul

~lim £ (x) = £(1)

x=wl

Therefore, for any values of A, fis continuousat x =1

Show that the function defined by g“] -t _[I] is discontinuous at all integral point.

x .
Here [ ]denotes the greatest integer less than or equal to x.

Answer
g(x)=x—[x]

It is evident that g is defined at all integral points.

The given function is

Let n be an integer.
Then,

g(n)=n-[n]=n-n=0
The left hand limit of fat x = nis,

lim g(x) = lim (x—[x]) J”E{"}_JIT[‘] n—(n—1)=1

=+ X

The right hand limit of fat x = n is,
Jlf" g(x)= |I_!I‘i (x=[x]) = lim (x)— lim [x] =n—n =0

It is observed that the left and right hand limits of f at x = n do not coincide.
Therefore, fis not continuous at x = n

Hence, g is discontinuous at all integral points.

f(x)=x"—sinx+5

Is the function defined by * continuous at x = p?

Answer

' . :.-‘:— 1 .-‘+5
The given function is-f(r} v —SIn A
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It is evident that fis defined at x = p

Atx=m, f(x)= f(n)=n"—sinn+5=n"-0+5=71"+5

Consider lim f(x) =lim(x —sinx+5)

AR AT

Putx=m+h
If x = m, then it is evident that h— 0

o dim f(x) = lim (x* -sinx +5)

AT N—T

=lim| (n+h) —sin(n+h)+ 5}

=it |

=lim(n+h) - !ai_lrll_‘!ISIll (m+h)+1ims

fr—sil f—i)
={:1t . l}}_ Iim[s-in weosh+ L‘U‘:S‘J'I:S[nh] 5
Jr—sl)
n° —limsin meosh— lim cos wsinh+ 35
=l Ffr—0

=n’ —sinmcos0 —cosmsin0+5
=n" —0x1—(=1)x0+5
=n"+5

s lim f (x) = £ (r)

Therefore, the given function fis continuous at x = n

Discuss the continuity of the following functions.

(@) f (x) = sin x + cos x

(b) f (x) = sin x — cos x

(c) f(x) = sin x x cos x

Answer

It is known that if g and h are two continuous functions, then

g+h, g—h, and 2.5 50 4150 continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.
Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.

Let c be a real number. Put x =c + h

Ifx—>c thenh—-0
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g(c)=sine
limg(x)=limsinx

N L 1o

= Lnl]] sin (¢ + Pi_}

= Iim[sin ceosh+coscsin kr]
=1

=lim(sinccosh)+lim(cosesinh)

Fr—ai f—lp
=sinccos0+coscsin
=sinc+0
=sin¢

+ limg(x)=g(c)

Therefore, g is a continuous function.

Let h (x) = cos x

It is evident that A (x) = cos x is defined for every real number.
Let ¢ be a real number. Put x =c + h

If x> ¢, thenh—0

h (c) = cosc

lim h(x)=limcosx

N—*C

= limcos(c+h)

fr—=ll

=lim[cosccos h—sincsin Al

Te=+ll

= limcosccos h—limsinesin

fr—=il fa—i}
=cosccosl—sinesin()
=coscx|—=singcx(

=C0sC

. lim hl[.\:j h(c)

Therefore, h is a continuous function.

Therefore, it can be concluded that

(@) f(x) =g (x) + h (x) =sin x + cos x is a continuous function
(b) f(x) = g (x) — h (x) = sin x — cos x is a continuous function

(o) f(x) =g (x) x h (x) =sin x x cos x is a continuous function
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Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Answer
It is known that if g and h are two continuous functions, then
h x
g(x)

(i) L, g(x)# 0 is continuous

g(x)
|
h(x)

It has to be proved first that g (x) = sin x and h (x) = cos x are continuous functions.

. Z(x)# 0 is continuous

(i)

\ h{x] = 0 15 continuous

Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.
Let ¢ be a real number. Put x =c + h

If x ~*c,thenh 0

g(c)=sine

lfil]}g[x} = IL_11:|I1_ sin x

= Lnl]] sin (¢ + Pi_}

= Iim[sin ceosh+coscsin kr]
=1

=lim(sinccosh)+lim(cosesinh)

Fr—ai f—d}

=sinccos0+coscsin(

=sinc+0

=since
~ limg(x)=g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x =c + h
Ifx®c, thenh ® 0

h (c) = cosc
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lim h(x)=limcosx

N—*C

= limcos(c+h)

fr—=ll

=lim[cosccos h—sincsin Al

Jr—sll
= limcosccos h—limsinesin b
fr—1 fe—l)
=cosccosl—sinesin()
=coscx|—=sincx(

=C0scC

s lim hl[xj h(c)

K=
Therefore, h (x) = cos x is continuous function.

It can be concluded that,

cosecx = , sinx = 0 is continuous

snx

= cosecx, X #nw (ne Z) is continuous

Therefore, cosecant is continuous except at x = np, n i Z

1 ; .
secy = , cosx # 0 is continuous
cosx

S SeCY. X # {Eu + 1}—: [n = Z} is continuous
x =(2n+ I]—K {HEZ.]
2

Therefore, secant is continuous except at =

AT T

cotx = , sinx # 0 1% continuous

sinx
—colx, x# 0T {n [= Z] is continuous

Therefore, cotangent is continuous except at x = np, n iz

Question 2

Find the points of discontinuity of f, where
_JS””_ ifx<0

f(x)= l x

x+1 ifx=0
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Answer
_ J““_iﬁ«:ﬂ
! {T} =1 X
l.'r 1, ifx=0

The given function fis
It is evident that f is defined at all points of the real line.

Let ¢ be a real number.

Case I:

. sine . . (sinx| sinc
If ¢ <0, then f'(c)= © and Innjl,'lx}:hm[ ‘ |= €

c R b "r 4 f

im £/(x)= 7 (¢)
Therefore, fis continuous at all points x, such that x < 0
Case II:
Ifc >0, thenf (c)=c+1and lim f(x)=lim(x+1)=c+I
]1m f’[x] =f {c}
Therefore, fis continuous at all points x, such that x > 0
Case III:

Ife=0, thenf(c)=f(0)=0+1=1
The left hand limit of fat x = 0 is,

sinx

lim _f{.‘r}: lim =1

yeil} ral oy
The right hand limit of fat x = 0 is,
lim f{x)=lim{x+1)=1
lim f(x) = lim (x+1)
Slim flx)=lim f(x)= (0
lim f(x)= lim f(x)=1(0)
Therefore, fis continuous at x = 0
From the above observations, it can be concluded that f is continuous at all points of the

real line.

Thus, f has no point of discontinuity.
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Determine if f defined by
I

j'{.r}: X sm;, ifx=0

0, ifx=0
is a continuous function?
Answer

I
j'{.r}: x sm;, ifx=0

The given function fis 0, ifx=0
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
. 2.1
If c =0, thenf(c)=c"sin—
c

o N AT | ST S R R
l||1‘|,f(x}—l|m[x"sm— —{llmx'] limsin— | =¢* sin—
¥ K _1' _l'l X3 AW _'x' /I |l_"

sim f(x) = f(e)

Therefore, fis continuous at all points x # 0
Case II:

If ¢ = 0, then /{0) =0
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. . . . ) ..
lim f(x)=lim| x*sin— | =lim| x" sin—
K=l K=l X a—l x
. .1
It is known that, —l<sin—=<1, x#0
X
= ¢ <gin—<x
X
N 3 1) 3

= lim [—x‘] < Iim(x' sin—J < limx~

Xl x l“”.\ x K —»il

. 5 .
=0= |IIT‘|[I’ sin —] =<0
a—sl) _r-‘_

. |
= lim| x"sin— |=0

] X
- fim £ (x) =0
e . . ; P . 5 .1
Similarly, lim f(x)=lim| x*sin— |=lim| x*sin— | =0

a—t r—a0" X ¥—3il X

s lim f(x)= 7 (0) = lim f(x)

Therefore, fis continuous at x = 0

From the above observations, it can be concluded that fis continuous at every point of

the real line.

Thus, fis a continuous function.

Question 25:
Examine the continuity of f, where f is defined by
_ sinx —cosx,ifx=0
flx)= .
-1 ifx=10
Answer
sinx—cosx,ifx=0

”x}z{—l ifx =0

It is evident that f is defined at all points of the real line.

The given function fis

Let ¢ be a real number.

Case I:
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If ¢ # 0, then f'(¢) =sinc —cose

lim f(x)= |~_1r'|:|_{51n X—eosx)=sinc—cosc

s lim £ (x)=f(e)

Therefore, fis continuous at all points x, such that x # 0
Case II:

If ¢ =0, then f(0)=-1

lim f(x)=lim (sin x—cos.x) =sin0—cos0=0-1=-1

=)

lim f(x)= lim (sin x—cosx)=sin0—cos0=0-1=-1

x—=0"
sim f ()= lim f(x) = f£(0)
vl x=i
Therefore, fis continuous at x = 0
From the above observations, it can be concluded that fis continuous at every point of

the real line.

Thus, fis a continuous function.

Find the values of k so that the function f is continuous at the indicated point.

kcosx . T
> ,1F.~:;f; -
. T—2x 2
flx)= alx =—
{ } . y T 2
3, ifx=—
2
Answer
kcosx . )
L= —
__f'{x}: n—2x
J i B T
3, 1I:c=;
The given function fis =
T T
r=— X =—
2 and if the value of the f

The given function fis continuous at- 2 , if fis defined at -

=

T
xX= ==
equals the limit of f at 2

2| o

at
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i
] m
=% f L—] =3
It is evident that f is defined at 2 and =

kcosx

lim f{x)=Ilim
x .;-' ( ] X ;:ﬂ—zx

T
Putx=—+h
5

n
Then, x —>;:;>h—>ﬂ

‘ kcos(g+h]
o lim _,f'(x]: lim mjx = Ji|1g >
- st W= 2x E_z[nﬂ,;]

Therefore, the required value of k is 6.

Question 27:
Find the values of k so that the function f is continuous at the indicated point.
. ki?, ifx<2
f(x)= ‘W atx =2
3, ifx=2
Answer

k', ifx<2

3, ifx=2

9]

The given function is

The given function fis continuous at x = 2, if fis defined at x = 2 and if the value of f at

x = 2 equals the limitof fat x = 2

. _ - 2 _
It is evident that f is defined at x = 2 and Y {2} B H-'} =4k
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lim f(x)=lim f(x)=/(2)
= lim (k)= lim (3) = 4k

x—=r 2

=kx2=3=4k

=df=3=4k
=4k =3
$k=i

4

.3
kis =
Therefore, the required value of

Find the values of k so that the function fis continuous at the indicated point.
e +1, ifx=m

= . atx=m
cosx, ifx>m

f(x)
Answer

) x+1, ifx=mn
flx)=

. L cosx, ifx=>m
The given function is

The given function fis continuous at x = p, if fis defined at x = p and if the value of f at

X = p equals the limitof fat x = p

It is evident that f is defined at x = p and fm)=lm+l

lim f(x)= lim f(x)=f(n)
= lim (kx+1)= lim cosx = kn+1

¥+ X X’

= in+l=cosm=kn+l

= kn+l=-1=kn+l
2
= k=-—
T
ks ==,
Therefore, the required value of T
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Find the values of k so that the function f is continuous at the indicated point.

_ e +1, ifx=3
_f[x}= o atx =35
3x=5, ifx=5
Answer
. bx+1, ifx=<5
flx)= _
3x=5 ifx=5

The given function fis
The given function fis continuous at x = 5, if fis defined at x = 5 and if the value of f at

x = 5 equals the limit of fat x = 5

It is evident that fis defined at x = 5 and f{::}: fx+1=5k+1

lim fx)=1lim f(x)=1(5)
= lim (kx+1) = lim (3x—5) = 5k +1

= Sk+1=153=-5=5k+1
= 3k+1=10
= 5k=9
Q
:’;C:T
5

.9
ks —.
Therefore, the required value of

Find the values of a and b such that the function defined by

5, ifx=2
flx)=q1ax+b,if2<x<10
21,  ifxz10

is a continuous function.
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Answer
3, ifx=2
f(x)=1ax+b,if2<x<10
21, ifx=10

The given function fis

It is evident that the given function f is defined at all points of the real line.
If fis a continuous function, then fis continuous at all real numbers.

In particular, fis continuous at x = 2 and x = 10

Since fis continuous at x = 2, we obtain
lim f(x)=lim f(x)=f(2)

= lim (5)= lim (ax+b)=5

=5 :-2a+.b=§

=2a+b=5 (1)
Since fis continuous at x = 10, we obtain

lim 7 (x)= lim £ (x)= £(10)

x>0
= lim (”"”’}=.1'i’ﬂf.'-”'}=”

= 10a+b=21=21

= 10a+b=21 -(2)

On subtracting equation (1) from equation (2), we obtain
8a =16

By putting a = 2 in equation (1), we obtain
2x2+b=5

>4+b=5
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Therefore, the values of a and b for which fis a continuous function are 2 and 1

respectively.

Show that the function defined by f (x) = cos (x?) is a continuous function.

Answer

The given function is f (x) = cos (x?)

This function f is defined for every real number and f can be written as the composition
of two functions as,

f=goh, where g (x) = cos x and h (x) = x*

[ (goh)(x)= g[h{x}} =g (x" ] = ms(xz } = _f{x]]

It has to be first proved that g (x) = cos x and h (x) = x* are continuous functions.
It is evident that g is defined for every real nhumber.

Let c be a real number.

Then, g (c) = cos ¢

Putx=c+h

Ifx— ¢, then h— 0

]Ti_r'r:_ g(x)= |T||31 cosx

=lim CDS{(‘ +h)
I

Jr—0

= Iim[cnsc cosh—sincsin h]

Fi—li
=limcosccosh-limsinecsinh
Ti—0) fr—l
=cosceosl—sinesin0
=coscxl—sinex0
= (0S¢
“lim (x)=2(¢)

Therefore, g (x) = cos x is continuous function.
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h (x) = x?
Clearly, h is defined for every real number.
Let k be a real number, then h (k) = k?

limh(x)=limx" =k

x—wk v—rk
Sdimhb(x)=)
lim /1 (x) = (k)
Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is

continuous at ¢ and if fis continuous at g (c¢), then (f o g) is continuous at c.

f(x)=(goh)(x)=cos(x’)

Therefore, is a continuous function.

Show that the function defined by / {r} - |cos 'T| is a continuous function.

Answer

f(x)=|cosx|

The given function is"
This function f is defined for every real number and f can be written as the composition

of two functions as,

f=goh, whereg{'r} =|.r and f?(»‘f}= COS X

[ (goh)(x)= g[h{x}] =g(cosx) = |{:usx| =f {x"]]

g(x)=|x| and h(x)=cosx

It has to be first proved that are continuous functions.

g{x} = |'r:| can be written as

—x, ifx<0
g{l}_{r, ifx=0

Clearly, g is defined for all real numbers.
Let ¢ be a real number.

Case I:

Ife <0, theng(c)=-cand limg(x)=lim(-x)=-c

X—sC N—i

i (x)=2(c)
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Therefore, g is continuous at all points x, such that x < 0
Case II:

Ifc>0, theng(c)=cand limg(x)=limx=c
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

Ife=0, theng(c)=g(0)=0

I1m glx)= I1m{ x)=0
(

]n’ng }—llm x)=0

x—=

" lim g (x)=lim (x) = g(0)

- o

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.
h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let c be a real number. Putx =c + h

Ifx—>c thenh—0

h (c) = cosc

]lmh[r}— lim cos x

N—*C

= limcos(c +h)

Je—2il
=lim[cosccos h—sincsin Al
fre=1i}

= limcosccos h—limsinesin

fr—ll =il

=cosccosl—sinesin()
=coscx|—=sincx(

=C0sC

. lim hl[xj h(c)

Therefore, h (x) = cos x is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is

continuous at ¢ and if fis continuous at g (c¢), then (f o g) is continuous at c.
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Therefore, J [x}: (gﬂh}{x] - g{h[ﬂc}}= g{cosx] - |C05x| is a continuous function.

) sin x| : .
Examine that | is a continuous function.

Answer

Let f(x)=sin|x|

This function f is defined for every real number and f can be written as the composition
of two functions as,

f=goh, Whereg{'r} =|x| and /i(x) =sinx

I: {gr}h}{x] = g[h(r}) = g[:-;in x)= |:-sin X = f[.l}:l

g(x)=|x| and i(x)=sinx

It has to be proved first that are continuous functions.

g(x)=|x| can be written as
—x, ifx <0
()=

x, ifx=0
Clearly, g is defined for all real numbers.
Let c be a real nhumber.

Case I:

Ifc <0, then g(c)=—c and ITI_T g(x)= lvl_l.“ (—x)=-c
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x < 0
Case II:

Ifc>0, theng(c)=c and ||mg( )= lT"-." x=c
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

Ife=0, theng(c)=g(0)=0
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x—=l) ¥—

lim g(x)=lim(-x)=0
lim g(x)= lﬂl_{x}:ﬂ

x—=l"

slim g (x) = Jim (x)=g(0)

x—»(l —ll
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
h (x) = sin x
It is evident that h (x) = sin x is defined for every real number.
Let c be a real number. Put x = ¢ + k
Ifx—>c thenk—0
h (c) =sinc
h(e)=sine

lim h(x) = ]_inj_ sinx

N—=%

= !I]HHIH{L‘ +k)

=lim [sinccusk +coscsin ﬁf]
]

= !'il:r:{sin ccosk)+ LiT; {cnsc‘ﬁin .&'?]

=sinccos0+coscsinl
=sinc+0
=sinc

L limh(x)=g(c)

N=¥g
Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is
continuous at ¢ and if fis continuous at g (c¢), then (f o g) is continuous at c.

7 (x)=(goh)(x) = g(h(x)) = g(sinx) = sinx|

Therefore, is a continuous function.

X)=|x—|x+
Find all the points of discontinuity of f defined by"r(t} |T| |" I .

Answer

The given function isf(x}:|x|_|-‘*'+|
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The two functions, g and h, are defined as
g(x)=|x| and h(x)=|x+1]

Then, f=g—-h

The continuity of g and h is examined first.

2(x)=|x| can be written as
g(x) ={

Clearly, g is defined for all real numbers.

—x, ifx<0

x, ifx=0

Let ¢ be a real number.

Case I:

Ifc <0, theng(c)=—c and limg(x)=lim(-x)=-c

]L_il:n_ g(x)=g(c)
Therefore, g is continuous at all points x, such that x < 0

Case II:

Ifc>0, theng(c)=cand limg(x)=limx=c

e N

limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

Ife=0, theng(c)=g(0)=0

lim g(x)= .|im{—:l:}=ﬂ

fig £(x)= i (x) =0

s lim g(x) = lim (x) = g(0)

r—+il ' x—+ll

Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
hix)= |.1'+ 1| can be written as

h{x}:{_{‘r"’l}s if, x <—1

x+1, ifx=-—1

Clearly, h is defined for every real number.
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Let c be a real number.

Case I:

If ¢ <1, then hi(c)=~(c+1) and limh(x) =lim| ~(x+1) | = ~(c+1)

N—=C

slimh(x)=h(c)

Therefore, h is continuous at all points x, such that x < -1

Case II:
If ¢ > 1, then h(c)=c+1and limh(x)=lim(x+1)=c+]

T

o lim h[x] = h{c)

Tore

Therefore, h is continuous at all points x, such that x > -1

Case III:

If ¢ =—1, then h(c)=h(-1)=-1+1=0
lim h(x)= lim [—{x+|)]=—{—|+]}=ﬂl
x——1 x——]

lim h(x)= lim (x+1)=(-1+1)=0

x=—1" x=—1"

solim B(x)= lim A(x)=h(-1)

x—=—1 fi——1"
Therefore, h is continuous at x = -1
From the above three observations, it can be concluded that h is continuous at all points
of the real line.
g and h are continuous functions. Therefore, f = g — h is also a continuous function.

Therefore, f has no point of discontinuity.
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Exercise 5.2

Question 1:

Differentiate the functions with respect to x.

s.in(x'1 +5)

Answer

Let f (x) =sin(x"+5), u(x)=x"+5, and v(¢) =sint
Then, [vm.'}{x} = v{u{x]} = v{xz + 5] = tan(x: | 5) = _f{x]
Thus, fis a composite of two functions.

Put¢= u[x}::r: +5
Then, we obtain

dv . (o2 L&

E=E[smr]:cu51=mb{1 +:J)

df d b o d z dr - -

i a7 () g ()= 20

Therefore, by chain rule, 4 = dv dt = ms[xl +5):-c 2x= 2.1c<:tlns(x2 +5)
dt dx

Alternate method

%[sin{x’+5ﬂ cos(r +5]-di{r +5)

X

= cos(x* +5)- i( )+ .:r 5]}
=cos( ) [2x+0]
+5)

—Eruh[

Question 2:

Differentiate the functions with respect to x.

cos(sin x)
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Answer

Lelf[x} = {:Uﬁ{ﬁin x),u(x)=sinx, and v(r) = coss

Then. (vou)(x)=v(u(x))=v(sinx) =cos(sinx) = f(x)

Thus, fis a composite function of two functions.

Putt = u (x) = sin x
?J _d [cusr] = —sinf = —sin(sinx)
I
df
[bll‘l.‘r}— COS X
dr dr
Lii % ;ﬁ —sin [5in x] SC0SX =—COosxsin [5in x]
By chain rule, ¢ roax

Alternate method

I:c:us (sin

r}:l = —5in (sin x] . :x{sjn x} = —sin [.\;in x] CCOSX = — :::15x5~;in{5;in x}

Question 3:

Differentiate the functions with respect to x.

sin(ax+b)
Answer
Let f [1} =5

Then, war

in(ax+b) u(x]:c.-x+h and v(!)=5inf
}—1{zr{ }—1 (ax+b)=sin(ax+b)=f(x)

Thus, fis a composite function of two functions, u and v.

Putt=uXx)=ax+0b

t)=cost=cos(ax+b)

—(ax+h) :i(ax]+i[b] —a+0=a

oy o

Hence, by chain rule, we obtain

—=——= coq[ax+b}-a=acc:5{ax+h]

Therefore,
fﬁ» d
[am
dt dt
dat _d (
dr oy
df ff‘l» et
dy i d.'r
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Alternate method

i[s{n[ax+b}]= cas[ax+£:).i[ax+h)

X ax

=cns(ax+b]-[%{ax}+i[b}:|

dlx
=cos(ax+b).(a+0)

=a Cos[ax+b}

Question 4:

Differentiate the functions with respect to x.

{5

Answer

Let f (x) =sec(tanVx ) u(x) = Vx,v(¢) = tant,and w(s) = secs

Then, (wovon)(x) = w[v{u[x})] = u[t[\f})] = w(tan «f;) = scc(tan ﬁ) = f(x)
Thus, fis a composite function of three functions, u, v, and w.

Puts=v(r)=tanr and r =u(x)= Jx

Then. i’p = j (secs)=secstans =sec(tant).tan (tant) [.v: tan r]
5

:sec[lanﬂ]-lan(land;) [r:\f;]

%:%{tanf]zsec:fzs&czﬁ
di d di 2 1 Lo
dr_dr(ﬂ)_drk" ]‘2“ Tk

Hence, by chain rule, we obtain
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et :dwldsld.f

dy ds dr odx

=sec(lan-.u'{;}- le’nrl(hln\.":)xse:a:2 Jx % 2‘};
g,j_m v"_scc(tanv'x)tan[tanv'{_]

| sec” \.I'Tsec(tan »,I'T) tan (lan J;)

B 2Jx

Alternate method
[ see{tanx) | =sec(tan ). tan(tan Vi) (1an %)
= sec(tan ) tantan ) s (1) ( 7}
= sec(tan x )-tan tan V/x ) -sec’ (vx )
sec( tan Vx )- tan(1 anx )sec? (V)

%\

,.1

Question 5:

Differentiate the functions with respect to x.
sin(ax+h)

cos(cx+d)

Answer

£(x)= s:in{ax+h} _ i({r}

The given function is CDS[M‘I_ d) x)

, where g (x) = sin (ax + b) and
h (x) = cos (cx + d)

o _Zh-gh

o f =

Consider g(x) = sin(ax+5)

Let u(x} =gx+ h.,v{f} =sin{

Then, [mu}{.\') = v(zr[x}) = v(ux+b} =sin(ax+b)= g[l}
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~ g is a composite function of two functions, v and v.

Put?=u(x)=ax+b

]

e}
dt

dx

%{sin 1) =cost =cos(ax+b)

d

—(ax+b) :i(mc)+%[b] =a+0=a

dx dx

Therefore, by chain rule, we obtain
. _dg _dv dt

Laelp(x):ar+a’, i

—_— :ms[ax+h]-a:acns[ax+b)

d  di dx
Consider h(x) = cos

Ux+d:|

v)=cosy

(
(

Then,(gop)(x)=g(p(x))=g(cx+d)=cos(cx+d)=h(x)

~h is a composite function of two functions, p and qg.

Puty=pXx)=cx+d

dq

dy
dy
dx

ﬂ%{cos_v} —siny = —sin{ex+d)

< (exrd) =< (ex) + < (d) =

Therefore, by chain rule, we obtain

de dy dx

-~ = —sin{cx+d]><c =—csin(ex+ .:F}
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, acos(ax+b)-cos(cx +d)—sin(ax+b){-esin(ex+d )}

[ms{cx+a‘]]z
:acus(ax+b}+csi"[m+b}_sm[cx+a’] I
cos(cx+d) cos(ex+d) cos(ex+d)

= acos(ax +b)sec(cx+d)+esin(ax+b)tan(cx +d )sec(ex+d)

Question 6:

Differentiate the functions with respect to x.
cosx‘isif(f)

Answer

] -]
cosx .sin” | x
The given function is ( )

%[cns ¥ -sin’ (x’” = sin’ (x’)x %{msx'q ]+ cosx’ x %[sin‘" {x’ﬂ

[sin st:l
)

Y i3 3 3 . 5
=sin (x )x(—ﬂmx ]x (x )+msx x,’Zsm(x )

&l

d
dx

5 d
. 3 e 2f 5 2 . 5 ; 5
= —s5Inx sin (x }x 3xT 4+ 28InX COSX COSY K —

—

= —3x"sinx’ -sin’ [x5)+ 2sinx’ cosx’ cosx -x5x"
=10x*sinx” cosx” cosx” —3x” sinx" sin® [xq)

Question 7:

Differentiate the functions with respect to x.

2, [cot (xj )

Answer
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%[EJmt(f]}

F cot
sin(x?) x —cosec” (r’)x i(r:}

dx

[( e x{h

\I'(C'DSI' x."rsm ¥ sinx’
—Zsﬁx
= . L] - . +
W2sinx” cosx” sinx”
—E\Ex

A 3 . 7
sinx”+/sin 2x

Question 8:

Differentiate the functions with respect to x.
n;:US(xE)
Answer
Letf(x)= cos(v‘rJ_c]
Also, let u(x)= Jx
And, v(r) = cost
Then, (vou)(x)= v{u{x}}
(45)
= cos/x
=/(x)

Clearly, fis a composite function of two functions, v and v, such that

t=u(x)=+x
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alx

Then %:i(ﬁ):i{x;\]:%x'l

And, dv_d —(cost)=-sint
df ot
= sin{v";)

By using chain rule, we obtain

di _dv di

de dit dx
. 1
:—sm{u";)-q\f_
2Jx

——Ql—ﬁsin(\f})

_ sin(v‘fJ_r]
2Jx

Alternate method

%[cos(sﬂ)] =—sin(v‘r;) d [u"';]

Questior
Prove that the function f given by

f{x] =|,r—l|, ve Iqt“is notdifferentiable at x = 1.

Answer

The given function is { ] |'T_]| xeR
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It is known that a function f is differentiable at a point x = c in its domain if both
fle+h)-1lce c+h)-1le

W TEMTE) g TN =1(C)

btk h hovl h are finite and equal.

To check the differentiability of the given function at x = 1,

consider the left hand limitof fat x =1

NUDURMIEEE
1

li
LR Je—sll fr
hl =0 -
T L
Jrall h bl fy

=1

(h<0=|h=-h)

Consider the right hand limit of fatx =1

SR -r () L+h—1-[1-1
f—ll’ h h—i l|I"||

im0 i (h>0=|H=h)

fe—1" h—" ‘I"||

=1

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x

=1

x)=|x|, x<3,
Prove that the greatest integer function defined byf{r} [L] D<xs< is not
differentiable at x = 1 and x = 2.

Answer
S(x)=[x].0<x<3
It is known that a function f is differentiable at a point x = c in its domain if both

im € *1=1() | Fleth)=7(c)

h>0 h = h are finite and equal.

The given function fis

To check the differentiability of the given function at x = 1, consider the left hand limit of

fatx =1
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fll+h ' 1+ h|=|1
lim - ( } 'f[ 1m[ ] [ ]
b=} h b
-1 -1
= lim——=lim —=w

Sl ,I[f sl ;jl
Consider the right hand limit of fatx =1

g SO+R) =7 () [l+h] [1]

f—ll .r{i' "

Lo 1=1 .
=lim—=lim0=10
[ -’

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at
x=1
To check the differentiability of the given function at x = 2, consider the left hand limit

of fatx =2
- j'{2+hg—f[2] - lim puj-[z]

Lo 1=-2 =1
= lim =lim-—=m=
[T bl iy

Consider the right hand limit of f at x =1

f(2+h)-1(2) _ [""”?] [2]

lim lim*———+
h—al)’ h f—all”
2-2
= lim =lim0=0
[T Hi—sd)’
Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x
=2
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Question 1:

aj.‘

Find @ :

2x+3v=sinx

Answer

The given relationship is

Exercise 5.3

2x+3v=sinx

Differentiating this relationship with respect to x, we obtain

e
d

= —(2x)+

dx

::-2+3ﬁ

%[2x+3y]=§(sinx]
d (3v)=cosx

=Cc0sx

Ldv
:;va—’l=c-:|sx—2
[

dy cosx-2

dy

Question 2:

Find €

2x+3y=siny

Answer

The given relationship is

2x+3y=siny

Differentiating this relationship with respect to x, we obtain

d d
—[2x)+—|°
29+ 50

) ): Ji[ﬁin y}l
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dy dy . .
=243 —cosy Y [By using chain rule]
v dx
gb:
= 2=(cosy-3)—
(cosy=3)—"
cdv 2
“dx cosy-3

Question 3:
Q
Find dx :
ax+ by’ =cos y
Answer
The given relationship is “* "‘f’}": =cosy

Differentiating this relationship with respect to x, we obtain

d de o_dg
—(ax)+ E(!}y ] = E(Cu&}-]

dx
d oy d
b—|y J=—(cosy w1
=a+ dx{y } dr{(:ﬂb}} (1)
i{y:) =2 L i[cns_v}= —sin yﬁ -(2)
Using chain rule, we obtain dlx dv and dx dx

From (1) and (2), we obtain
a+b><2y£= —sin yﬁ
dx dx

= (2by +sin }-‘}ﬂ =-a
v

Ldy _ -a

“dx 2by+siny

Question 4:

i
Find @ :

xy +y2 =tan x+ ¥
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Answer

The given relationship is

Xy +y2 =tan x+ v

Differentiating this relationship with respect to x, we obtain

%(-‘?H'J-‘a]:%{lmuﬂ:)

= L () + L (17) =L (1 )+ 2
:['LI‘;_;{A_ +I‘%}’ 2}’% =Se¢:x+%
= ']'"1"'1'%4‘7}’% = sec’ x +%

= (x+2y-1)—=sec’x -}

Question 5:

dy

Find ¢ :
X4 xy+yt =100
Answer

The given relationship is* T )" =100

[Using product rule and chain rule]

Differentiating this relationship with respect to x, we obtain

d o, 1 i
o (.1' +xy+y }= dr{lﬂﬂ]

[Derivative of constant function is 0]
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d dy dv _ _
= 2x+| ¥y X)+x- +2y—=10 Using praduct rule and chain rule
[' dx[ ] dx} T odx [ &P ]
:>21+,1f-l+1-dv+2y@ =0
ax o
ﬂj,-'
= 2x+y+{x+2y)—=0
y+(x+2y)
cdy 2x+y
o x+2y
Question 6:
dy
Find @ :

X +xty+xpyt +y =81
Answer
. . . .x"+t2:+x1+ :‘1=8]
The given relationship is Yy -l
Differentiating this relationship with respect to x, we obtain

%{IS +,r2y I8 1]?2 + y3)= %{8])

dyo. dyay dy oy dgs
= () (xy)e (o) () =0

= 3x° +[_v%{x2]+x3 f—;}[; %{x]‘” %(-1"2)}+3'L'3 §= 0

X

= 3x’ +[_1:- 2%+ x° %}[f A+ x- 2_1:-%}3}22%:{}

2
= (x

+2xy+ 3_1»‘2)% + (3.1"'1 + 2xy+_}f’) =10
—(3x* + 29+ )

(7 +2x0+3)%)

dy
dlx

Question 7:

ﬁ
Find @ :

sin” y+cosxy=mn
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Answer

The given relationship is S V' +C0SV =T

Differentiating this relationship with respect to x, we obtain

o . 2 . o
E[sm y+eosxy)= E{n]

= %{S.In2 y]+%(msxy}=£}
Using chain rule, we obtain

%[sinl y]zzsin y%{sin;) = 2sin ycns_v%

d . d : d v

—(cos xy) = —sinxy — (xy) = —sinxy| y—(x)+x—

X dx cdx i
=—sin I_‘{_V-l + x%} = —ysinxy - xsin 1}'%

From (1), (2), and (3), we obtain
. dy ) . dy
2s5in yeos y—— psinxy—xsinxy—=10
) } de - £ £ de
= {2 sin y cos v —xsin Jn»)—:l = ysinxy

X

: . dy :
= (sin 2y - xsin xy}T} = ysinxy
Ly

cdy ysinxy
dx sin2y-—xsinxy

Question 8
il
Find @ :
sin” x+cos” y=1
Answer

. 2 L
The given relationship is sin” x+cos” y =1

(1)

-(2)

Differentiating this relationship with respect to x, we obtain
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(1)

d i, o4 5 d
—{Slﬂ_ X+ Cos™ _V} = —
dx elx

=3 %(sinzx] +%(c¢:}sz _y] =0

d d
= 2sinx-—(sinx)+2cos y- cosy)=0
5 (sinx) v (eosy)
: . dy
= 2sinxcosx +2cos y(-siny)-— =0
‘
::-sin?x—sinﬁyﬁzﬂ
dx
cdy sin2x
dv  sin2y
Question 9:
Q
Find @ :
) .( 2x ]
y=sin -
1+x°
Answer

v =sin '( ; ]
The given relationship is X

. ,( 2x ]
¥ =sin -
1+ x°

. 2x
= §iny = -
1+ x°

Differentiating this relationship with respect to x, we obtain

i[ﬁiny}:d[ 2x ]

dx dr\ 1+ x°
=5 COS Lﬁ = i( 2x‘ ] (]]
Ty ode\ 14 x°
2x u

The function, | +% | is of the form of V.

Therefore, by quotient rule, we obtain
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2 d d 2
i( 7y Jz[I+x').£{2x}—2x~£(l+x']
dx (1+x3)2

U+xﬂ2—2x{ﬂ+lﬂ_2+2f_4x1_zp—xﬂ

(I+x2)3 (1+.x‘°)2 (]+x3]2

. 2x
sin y = =
Also, I+x

— | (2« Y
= cosy =.fl-sin” y = l—[l rzj =
+X

|(1—x:): _ -

V{1+x:)3 1+x°

From (1), (2), and (3), we obtain

1+x°

-(2)

1+x° m_“+ff
dy 2
dr 1+x°

Question 10:

y=tan |- x=x
: S 1-3x°
The given relationship is
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3x-x"

¥=1an S
1-3x"
- _:c.'!

—fany=— (1)

= 3X"

3tan? —tan’ 2 _
tan v = 3 3 -(2)

a ¥V
l1=3tan” -

Tk

It is known that,
Comparing equations (1) and (2), we obtain
x= tami

Differentiating this relationship with respect to x, we obtain

i{x} = it tan i]
dx dx 3

:bl=HEL‘:£~— B
3

Answer

The given relationship is,
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=5 Cos ) = -

14+ x

I—tan® 2 2
7 l-x

= :] =
5 ¥ -
1+ tan- - +x

2

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

tanizx

Differentiating this relationship with respect to x, we obtain

sec” ‘Frd _v]: d{xj
2 del 2) dv
= sec? Lx LY -y
2 dx

dv 2

[SV R

Question 1

aﬁ:

Find @ :

[ 1=x
y=sin"' |, 0<x<l
l+x”

Answer

! | [] ; x: ]
¥ =5 o
The given relationship is T
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! I[]_x:]
y=sin -
1+ x°

) 1-x°
= siny= =
1+ x°

Differentiating this relationship with respect to x, we obtain

d, . d(1-x°

— (51N ¥)=— - el 1
a’x{ J] cfx(]+x'] {}
Using chain rule, we obtain

(siny) :m.v.y-@

X a9
cosy =4/l —sin’ y =

(l+x -

l+1r 1+r

2x ch
1+ x° u"x

2 (siny)=

d [| -x ]: (I * x:). (I -x )I - (I _ f).(] ;* )r [Using quotient rule|

dx| 14 x° (]Hz):

_ (147 )(~2x)—(1-x")-(2x)
(1)
_ 2x-2x - 2x42¢

(1+x:]z
S -.(3)

(l+x:]:

From (1), (2), and (3), we obtain
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2x dv = —4x
I+ x* dr (l+x:):
dv -2
de 1+x°

Alternate method

= 1 ]—X:
V=5In S
[1+x']

3

siny=
N l1+x

:>{l+x:)siny:l—x:

= (l+siny)x* =1-siny
s l—siny
e
l+sin v
[ﬂm Y _sin? ]3
2 2 2
= x° = =
[ Il" ! JJ)_
cos < +sin
2 2
Yooy
c0s -~ —sin
- = 2 2
Yo oY
CO5 — <+ 81N
2 2
1—tan=
D 2
1+ tan >
2
= tan[ -2
V42

Differentiating this relationship with respect to x, we obtain
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d

d Ty
_{x]:—. [an(__-_}
dv dlx 4 2
4 2) dei 4 2

31=[l+m:[£_i] [li]
4 2 2

:}1={l+11]{—1 afv]
2 dv
SO 2
de 1+
Question 13:
v
Find @ :
o 2x
¥ =Cos [ ﬁJ,—]«:x«:l
1+ x°
Answer

y=cos ' [ - ]
The given relationship is I+x

| [ 27‘: ]
¥ = Cos -
’ l+x

2x
= Cos V= -
l+x

Differentiating this relationship with respect to x, we obtain

i[ms}:}zi.( 2x ]

dx de |\ 1+a7

Wy d d 2
o VI;:(1+I')-ir[lx]—zj(-dx(]+x']

dx (1+2)

Page 61 of 144

Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers



§ eVidyarthi

FREE Education

Class XII Chapter 5 - Continuity and Differentiability Maths

o I-cosﬁ-%: (1+xb):-<21—;1r-2x
+x°

I+.x:3}2 —47 gy -2(1-x7)
(1+x1): dx [l+x3]E

Question 14:

dy
Find @ :

V= sin”! (21:\."?—_1’) - ]

;]

1
V2

< X<
Answer

___y=sin '[gxm]
lationship is .
v :sin"(zxm]
= siny = 2xvl—x*

Differentiating this relationship with respect to x, we obtain
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dy d Y ~dx |

cosy—=2 x—[\l'rl—x‘ +4l—x" —

T odx [ e J dx |
ﬂ ; —23 -
= 1-51'11-_;-&:2 x L =X

dx 2 \J1-x7

ol T

1 —x°

= [1-42*(1 r]‘izzl'fi]

= (|_2x3]3i‘f=3 _1—2x-J

ﬁ 1—x°

dy 2

dx I—x*
Question 15:

&

Find @ :
p=sec ' K 3 ch{i
' 20 -1) J2
Answer

£

|
v =sec '[ S ]
The given relationship is 2a -1

y =sec '[ J ]
’ 2x =1
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= cos y=2x" -1

= 2x" =1+cosy

v
= 2x* =2¢cos’ =

:b.t‘:COS%

Differentiating this relationship with respect to x, we obtain

= 1= 1111J'I~ﬂr ‘]J
2 dvl 2
L la
sin}' 2 dx
2
dy -2 -2
::-”i —] }J=
* s l—cos J
2 9
dr 14
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Exercise 5.4

Question 1:

Differentiate the following w.r.t. x:

X

=
sin x
Answer
&
y=-
Let sin x

By using the quotient rule, we obtain

E i sinx j; (e”) —g" i (sin x}

dx sin” x

sinx.[c»“]—e" (cosx)

sin® x
" {sin X —Cos x}

= — SaeEamned
sin” x

Question 2:

Differentiate the following w.r.t. x:

=moox

Answer

By using the chain rule, we obtain
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ﬁ — i[{].\in 'y )
dr  dx
= & _ el -i(ﬁin" x}
dx dx
a2m I.T I
=& - =
N
e.\in 'x
=¥
f‘ » J“ilﬂ X
DA L—1,x e(-11)
dr 41— x7

Question 2:

Show that the function given by f(x) = e* is strictly increasing on R.

Answer

Let™ and x, be any two numbers in R.

Then, we have:

X <x,=2x <2x, = e <" :>_f'{x,} <f(x,)

Hence, fis strictly increasing on R.

Question 3:

Differentiate the following w.r.t. x:

x

=4

Answer

Let V' =¢
By using the chain rule, we obtain

dy_d
dy o

Qui

ion 4:

[e*" ) — " -i(xﬁ ) —e" 3x? = 3x%e"

dx

Differentiate the following w.r.t. x:

sin{tan e ]
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Answer
y=sin(tan"¢")
Let

By using the chain rule, we obtain

@ = i[Sin [tan" E_“)]

e dx
=cos[tan 'e ')-%(t&n e ‘)
=cos(tan e ')-H(L_I): ;—i{ )

cns(tan"e"‘] _

e cus(lan'] e’ )

1+e ™
—e cos(mn" e"‘)

Yy
1+

Question 5:

Differentiate the following w.r.t. x:
log(cose")
Answer

Let? ™ log cose” )

By using the chain rule, we obtain
dv  d
= = —[Iag{cuse" ]]
dx dx
1

. I_'f_ MR |
= ose’ [mhe )

1 A
- (e Lo
cose e
d —sineg” o
cose’

n
=—¢" tane’,e" ;&(2n+ I}E,n =N
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Question 6:

Differentiate the following w.r.t. x:

5

e +e" +..t+e

Answer

(e’ +e" +..+e" )
dx

) ) )l
sl )¢ e )]

X
=e" +(e"': x 2.‘{]+(E‘T1 x 3x° ] +(e”l % 413]+[ef %51 )

k:'

2 . E
=e" +2xe" +3x%e” +4xe" +5x'e"

Question 7:

Differentiate the following w.r.t. x:

Ve x>0

Answer

LetY = V{F

2 )

2 2T
Then, ¥ ¢

By differentiating this relationship with respect to x, we obtain
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}’2 — e
v —d . .
= 2y—=g"" — \.n'r; By applving the chain rule
e dx( ) [By applying ]
S
Vi 2 Jx
E ~ eﬁ
dx 4}'-&";
Ly
f-ix 4 Ev': VI{-;
= d—‘} =& x>0
dx  4y/xe’

Question 8:

Differentiate the following w.r.t. x:
log(logx).x >1

Answer

etV = log(log x)

By using the chain rule, we obtain

dv_d
E_E[lng{logx}]
_ ~i{logx}
logx dx
__r 1
logx x
1
xlogx 5 4

Question 9:
Differentiate the following w.r.t. x:

COsX
x>0

log x
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Answer

CO5.X

H

Let' - log x

By using the quotient rule, we obtain

o d
d dr{u.os;}xlogx—q.us;cx a{r[lﬂg;}

dx

(logx)

. |
—sinxlogx—cosxx
_ X

(logx)’
—[xlog x.5inx +cos x|
X

x{lﬂgx}]

0

Question 10:

Differentiate the following w.r.t. x:
cos[logx+e‘},x =0
Answer

Lot V =C08s [ log x+ c"]

By using the chain rule, we obtain

%:—sin(lugx+e‘)-%[lﬂgr+e"]

=—sin(log x+ e*]-[di{lng,r)+ :x{f.‘}
) X

— i - 2T |, l 5

= sm(loga.ﬂ. ](x+a ]
M .

:—|—+e’ sm{lr:rg.r+e”),x:*ﬂ
'\x /I
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Exercise 5.5

Question 1:

Differentiate the function with respect to x.
COS X.C08 2x.C08 3x

Answer

Let v = cosx.cos 2x.cos3x

Taking logarithm on both the sides, we obtain
log vy =log {-.:ns x.cos2x.cos 31‘]

= log v =log [cus x] + Icg{cu:-; 21‘} + log (cus 3x]

Differentiating both sides with respect to x, we obtain

| dv 1 d i 1 d .
—= = ——(cosx)+ ~—(cos2x )+ . c0s 3x)
vde cosx dx cos2x dx cos3x dx
J L sin2, i3
:;,i:‘;_s"”‘_s'" rli(zx_sm r_i{k]
ae cosx  Ccos2y oy cos3x oy
aj)

S —— = —C0SX.C0S 2x.cosix [tan x+2tan2x + 3tan 3.1-]
[

Question 2:

Differentiate the function with respect to x.

\/ (x=1)(x=2)
(.t—3}[x—4}{x—5}

Answer

. J[ G0-2)

x=3)(x—4)(x-5)

Taking logarithm on both the sides, we obtain
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ogv=Ilo [x—l}{-'f—g}
e g\/{x—s}{x—*‘l(r-”

(r=1)(x- 2) ]
—.:-;I(,x -I

= logy= %[Iog{[x— ) (x- 2)} —]0@{{.1’—3}{1—4](.1—5]}]

1
=logy= lﬂg[

= log y = %[Iog[_t—l]+Iog[.x—2}—Iog[x—3)—Iog[.x—4}—log[x—5}]

Differentiating both sides with respect to x, we obtain

el ) L x=3
ldy _1|x —ld.x( 3 [x )= Su’t(l )
ydy 2 1
: . T (x—4)- L (x=5
x— 4a’¥( }x Sa’r[r }
$Q=£[1+1_1_1_1]
dy 20 x-1 x-2 x-3 x—-4 x-35

cdv 1 -—I}{n—][|+1_1_1_|}
o 2\(x-3)(x-4)(x-5) Lx-1 x-2 x-3 x-4 x-5

Question 3:
Differentiate the function with respect to x.

OIS T

(logx)
Answer
Lety= {Iﬂgx}m"

Taking logarithm on both the sides, we obtain

log y = cos x-log(log x)

Differentiating both sides with respect to x, we obtain
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N

=

i[cos x)x log(log x)+cos.xx i[lqg[mg ¥)]

d
— o x
log x dx[c‘&})

yo=1-

ﬁ =—sinxlog(logx)+cosxx
v dx

]

5=

. sx |
:_v[ sinx lug(lugx] y LO8X }
logx x

i = (log r){ cosy —sinxlog[l@gx)}

dx xlogx

Question 4:

Differentiate the function with respect to x.

L
Answer
Let y = x* — 2%
Also, let x* = and 2™ = v
LV=u-v
dv _du dv
de dv dr
u=x"

Taking logarithm on both the sides, we obtain
logu = xlogx

Differentiating both sides with respect to x, we obtain

Lu_ [i[r}x Iogx+xx%|[logx}}

i dx

du |
= ——=u|Ixlogx+xx

dx X
= dx —1"‘[|0 \'+I}

cx &

::»%=x‘(]+]0gx}

v = 25inx

Taking logarithm on both the sides with respect to x, we obtain
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logv=sinx-log2

Differentiating both sides with respect to x, we obtain

%-%:]Dgz-%{sinx]

dv
:;»d—:vlogimsx

fx
dv
= &= 29 s log2
alx
b (1+logx)-2"" cosxlog?
T

Question 5:

Differentiate the function with respect to x.
{r+3 ¥+4} {.I-i—flr

Answer

Lety =(x+3) (x+4) .(x+5)°

Taking logarithm on both the sides, we obtain
logy =log(x+3) +log(x+4) +log(x+5)’

= log y =2log(x+3)+3log(x+4)+4log(x+5)

Differentiating both sides with respect to x, we obtain

lay_, 1 ﬁr[r+3}+3- ! -i(x+4] FRELES i“s}
¥ “dx x+3 oy x+4 dr x+35 o

dy 2 3 4
==y -+ +

dr | x+3 x4+4 x+45

:»:?’ (T+3]{t+4]3{x+5]4-{ 2 , 3,4 }

v x+3 x+4 x+5

dy 3

;";={_‘L’+3} {_\'+4} {_J.+5} [

el

{J.+4](3:-!—5)+3{x+3}{.r+5}+4(x+3}(x+4]:|
{x+3}(x+4}{.‘r+5}

=W (ra3)(xra) (x4 5) [ 2(x* #9204 20)+3(x" +8x+15) +4(x" + 7x +12) ]

el

X %—{x+:—} 'r:+-l} {r+5}'1(9x3+?0x+l33)
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Question 6:

Differentiate the function with respect to x.

[ ]T (1+1]
x4+—| +xt
.

Answer

x 1

AP

Lety=|x+—| +x+
X

i I+
Also, let u=[x+l] and v =x"
X
V=tV
:}ﬁ=ﬂ+d—v (1)
dv  de dx

Then, u = [1 +l]
x

X

1y
= logu = Iog[x+—]

1
= logu=x log(.r +—_]

X

Differentiating both sides with respect to x, we obtain
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—I-@—i{x}x]og[.r+1]+ L] Iag[;ﬁl]
u dx dx x)  dx x

1 du

= ———=Ixlo
w oy &

clit [

= —=|x+
dx
el [
—=|x+
dx
du [ I]1
— = x4+—
clx x
(11

v=x" "

= logv= Ing[r

[Hﬂﬂx[“‘ﬂi[ﬁg

E o Iog[,x+%ﬂ 2)

.
|1+h|]

1
= 10gv=(| +—]Iogx
X

Differentiating both sides with respect to x, we obtain
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1 dv el 1 1Yy d
i = 1+ xlogx+| 1+ —log x
vodv | dx X x ) dx
1 dv 1 191
= ——=|—— |logx+|14+— |- —
v odx x” x,) x

1 dv logx 1 1
== —
v dx X x X
dv [—logx+x+l}
==y
dx x°
.’11-1\ —_ ]
:}a‘v:x[ _Tg[x+1 jlugx] -(3)
dx x°

Therefore, from (1), (2), and (3), we obtain

dy | ]]’" -1 [ ]] |:"l.:[.r+]—log.rJ
—=|x+— —+log| x+—||+x —
dx [ x| xm+1 X x

Question 7:

Differentiate the function with respect to x.
(logx)" +x"

Answer

Let y = (logx) " e

Also, letu =(logx)" and v = x"*"

RS TES TR
de  de  dx
u = (log x)*

X

= logu = Iag[{lug x) }
= logu = xlog(log x)

Differentiating both sides with respect to x, we obtain
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II; Zﬁ = ;i(x}xlng{h}gx}+x~ d [h‘lg(li}gx}]
:}ﬁ=u lxlnﬂ{lu x}+x L —{lnﬂx}

dx ellog log x dx

du < |
= —=[log log(lo +

dx ( bx} g(logx) Iugt x:|
o =(log x)' Iog{]ng 1z:}+

elx log x
_,du il (IGE ]1 I(}g{lt1gx}-|(}gx+11

elx i log x

f; (logx)’ '[I+Iogx.log{10gx]] -(2)
y=x"E"

= logv= Iog(x'"g'f)
= logv =log xlog x =(log x}:

Differentiating both sides with respect to x, we obtain

1 v
Vi dr [{lﬂgl} ]

1 dv o

=2(1 |

= v dy {ugr] r;l"x{ ugx}
= dv =2v(logx)- :

dx x
= d'l’ 2 log x Iogx

ex x

d‘" lovg o1
= —=2x""""logx (3)

dlx

Therefore, from (1), (2), and (3), we obtain

e (log x]r I [l +log x.log(log \"}] + 23" log x
X

Question 8:

Differentiate the function with respect to x.

Page 78 of 144

Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers



§ eVidyarthi

FREE Education

Class XII Chapter 5 - Continuity and Differentiability Maths

(sinx)" +sin"' Jx
Answer
Let y = (sinx)" +sin"' Jx

Also, let w = {sin x}x and v =sin "' \f’J_c

Ly=u+v

Ay _du dv (1)
dr v dx '

U= (sin.x:}Jr

= logu = log (sin x]v
= logu = xlog(sinx)

Differentiating both sides with respect to x, we obtain

ldu d . d .
== E(x}x log (sinx)+x xg[log{sm x}]
=N % =u|:] -Iﬂg{sinx]+x-$r%{sin 1}}
du . i« X X
== (sinx) []og(sm x)+ oo x}
dur . X .
:>E=(sm x)" (xcot x+logsin x) -(2)

v=sin"Jx

Differentiating both sides with respect to x, we obtain

F e ()

dx WE

= @_ 1 \ 1

dr  AJl1—-x 2\"';

dv |

dbx 2\)'|Jr—x2
Therefore, from (1), (2), and (3), we obtain
dy .t . 1
— =(sinx) (xcotx+logsinx)+ ——
e~ ) (oot vlogsina) v P
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Question 9:
Differentiate the function with respect to x.

sinx

A (sinx)”
Answer

]_.Cl V= xsinx + [Sinx]um.r

EHIEY

Also, let = x"" and v = (sin _t}m"

Ly=u+v

:>Q =d—u+£ (]]
de  dx dx

3= -rb'iﬂ.t

:> ]Ogu — Iog(xsiux]
= logu =sinxlog x
Differentiating both sides with respect to x, we obtain

ldu d d
— = si dogx+siny-—{(logcx
o (‘sll‘l x} 0gx+sinx a’x( ug:.]

du [ . 1}
= —=u|cosxlogx+sinx-—

X X
= du :x’”“{ccs.rlogx+ = .\:} -(2)
dv x ’
v=(sinx)""

= logv =log(sinx)""
= log v = cos xlog(sin x)

Differentiating both sides with respect to x, we obtain
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ldv d . d .
——=—1/cosx)xlog(sinx)+cosxx—/| log(sin x
v dx dx( } g{ ) dII: g( ]]
dv } . | d .
= ——=v|—sinx.log(sinx)+cosx- sinx
dx [ e ) sinx rix'( }}
dv . yooax . . cosx
= —=(sinx)"" | —sinxlogsinx+———cos x
fx sinx

= v _ (sinx)™" [~sin xlogsin x +cot xcos x|
A

= v _ (sinx)™" [cotxcos x—sinxlogsin x]

[
From (1), (2), and (3), we obtain
dy - sin x . * ) ;
T”’=x*" cosxlogx+——— | +(sinx)"" [cosxcotx—sin.xlogsin x]
ax iy
Question 10:
Differentiate the function with respect to x.
LC0ET 1-2 + I
x* -1
Answer
ICoEa 'x-z +]'
Let y=x"""+—
x -1
! x +1
Also, letw=x""" and v=
x =1

Ly=u+v

dv  du dv

b _du & (1)

dv  dy dx
0= I.I.l\.'l.‘lh.t

:> ]Dgu -~ Iog(x.'tl.'ﬂ\-.'(‘]
= logu =xcosxlogx

Differentiating both sides with respect to x, we obtain
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Lu_d (x)-cosx-logx+x d (cosx)-logx +xcosx d (logx)
udre drx ‘ de ' S d

du : 1
= - = 1-c-:lsx-I{:-g:r+.x-{—51nx}log.x+xcosx-—
X

du KOs Y =
¢E=.r {cosxlﬁg.x—xsmxlogx+cosx]
::>@:.'c"“'“’“"[wsx(l+I-::rgx]—.rsiu.rlugx] -(2)
i .
X +1
V=—
x -1

= logv= Iog(x: + I)—I{}g{x: —l)
Differentiating both sides with respect to x, we obtain

1 dv a 2x 2x

vae xT+1 xT—=1

:>£= ) 2:{(1‘1 —I]—Zx{_r: +I)

dx (x?+l){x3—l}
:>£=x1+]x —dx

dr x" -1 (x:+l][x2—|)

dv —4x

. a3
e (1) ()

From (1), (2), and (3), we obtain
dx

f_ﬁj=x.\-ﬂm"|:cﬂﬁx[|+|{jg_\")—1’5§in X|Dgx]—{ J
xt=1)

dx

Question 11:
Differentiate the function with respect to x.

1
(xcosx) +(xsinx)s
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Answer

_ !
Lety =(xcos x]\ +(xsinx)s

1
Also, let u=(xcosx) and v =(xsinx):

Ly=u+v
dv  du dv
D=t —
de  dv  dv

i ={xcos x}t

= logu = log(xcosx)

= logu = xlog(xcosx)

= logu = x[log x+log cos x|
= logu = xlogx + xlogcos x
Differentiating both sides with respect to x, we obtain

L _ i{xlﬂgx}+%[1‘ log cos x)

wdv  d
= % :1.-H]ngx-%{x]+x-%{]ﬂgx]}+{lngmsx-%(:;}+x-%(lﬂgmsx]ﬂ
= % =(xcosx)’ H]ogx-l+x~%]+{10gcnsx-l+x-wlsx -%{msx]H

_ (xcosx)'[(1+logx)+(logcosx—xtanx)]

dx
du P
=>— =(xcosx) [I —xtan x+(]ﬂgx+lngcn5x}:|
dhi ¥
= =(xcos I=xtan x+log(xcos 2
™ (x x)[ xtanx +log(xc .I]:I (2)
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|

= {xsin x)«
1
= logv = log(xsinx)

= logv = lIlzztg{.x: sin x)
X

= logv= ]—(Iog x+logsin x)
X

= ]ogv:l—lngx+llogsinx
X X

Differentiating both sides with respect to x, we obtain

]u’v_a’ ]lurr +EJ1I I]nr(ﬂin'r)
vde drelx & dv| x LS
ldv [ di1Yy 1 d _ di1y 1 d
——=logx-—| — |+——(logx) |+| log(sinx)—| — |[+——
vide | gL cir(x] X u’x{ EI]:| |: E{ r) cﬂr[.r] {
::»lﬁ—_lug r-[—LJ+l LN log (sin 'E]-[— : ]+l | 3
vde | ) x x ’ X ) x sinx dx
1adv 1 log{sinx 1
=-2= *{]—mgr){— E[z ]+ : w:os;c}
vy x° x xXsinx
' 1-logx -1 inx)+ xcot
:“ﬁ =(,rsin,r}x ] ]c:bl+ gg[smt] o x]
el X x
L[ 1-log x —log(sin x)+ xcot
:)ﬁ:(_minx}: og X c:-;,[jm t)+.xco x}
ey i x
, L[ 1= log (xsinx)+xcot
LA (xsinx)s el 1x) . 1
dx i x

From (1), (2), and (3), we obtain

X olX

{log(sin .r)}]

2

dy l{:qu::c:t:rﬂ—I-':rg[.wcsmx]

—= BIEEL | xsinx)«
0 (xcosx)"[1-xtan x+log(xcosx) |+ (xsinx) x

Question 12:

aﬁ.‘

Find 9¥ of function.
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I,x_l' + Iv'l:

Answer

The given function is

I:';_l' + Ivt — -I

letxY =uand y*=v

Then, the function becomes u + v =1

du
e
dx

u=x

dv

=0 (1)

= logu = Iog(x"')

= logu=ylogx

Differentiating both sides with respect to x, we obtain

1 du

1 dx

dy i
logx—+yp.—(logx
gx—+) u!r{ gx)

du |: dy |:|
= —=u|logx—+y-—
elx ey X

¥

A [logx£+£] -(2)
cx dx :

V= -}.l g

= logv= Iog(}' ")

= logv=uxlogy

Differentiating both sides with respect to x, we obtain

1 e e
—-—=log y-—(x}+x-—(logy
s 0ey g (x) e (loey)
dv 1 ay
= —=v|logy-l+x.-——
dx v odx
dv x dy
=—=3"|logy+——" |3
dx g [ o _!:Ci'f} [ }

From (1), (2), and (3), we obtain
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: Fel ’ _ dv
¥ (logxl_p —]_]_‘_}.1 [lﬂg }’+£—} =0
drx X N Vv dx
— {x-" log x + xp™! }dy = —{yx-"" +p* lug_}:)
dx
cdv 'y log
- dx x! Iogx +,\:I1,"T :
Question 13:
il
Find 9¥ of function.
yr=x'
Answer

The given function is ~*

Taking logarithm on both the sides, we obtain
xlog v=vlogx

Differentiating both sides with respect to x, we obtain

]ug}'-%{x}+ xrditlogy] :lugx-i{y]tv-%{lugx]

=logy-l+x- | & =lo P,
s- ¥y dx . dx Y x
:;-]0gy+—— log 'cajj Y
v ox de  x
:b(i—ll}g.\:J£=£—|ﬂgy
v dr  x
- x-ylogx ﬁzy—xlog.v
¥ clx x

LAy _y|y=—xlogy
Cdy x| x—vlogx

Question 14:

dy

Find € of function.
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(cosx) =(cosy)"
Answer

The given function is{m“}. ={cus_v}

Taking logarithm on both the sides, we obtain
vlogcosx = xlogcos y

Differentiating both sides, we obtain

logcosx-——+ y-—(logcosx)=logcos y-—(x)+x-—(logcos y
& v ! d_TI: & ] geoss .nir( } afw( € ]
:%h:-gmsxﬁ+ V-L-E(CDST}_MEWS peltx -i[cosy}
dy T ocosx dy ) . Cocosy dx
ﬂf}' ¥ . X A ﬂ'l’
= logcosx—+ ——-[—sinx) = logcos y+ =sin y)-——
¢ dr  cosx [ } B0y cos_v[ ' ] dlx
= log cosx b _ vtanx = logcos y—xtan y &b
elx clx
dy
= {Iog Cosx+xtan y} =Y tan x + log cos v
X

_dy  ytanx+logcosy

Cdy xtan y+logcosxy

Question 15:

v
Find € of function.

Xy = (-I’l:'1I B

Answer
{1-¥]

The given function is ™ = ¢

Taking logarithm on both the sides, we obtain
]Og{x}r] = log{e"' ¥ ]

= logx+logy=(x—y)loge

= logx+logy= {x - },} ]

= logx+logy=x—v
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Differentiating both sides with respect to x, we obtain

d dy
—(logx)+—(logy)=—I(x)-—
{ E:} c."x{ g ] n’x{} dx
1 1 _, &
¥ vy dlx
/ 1Y dv
:>|]+_|d_,5_]_l
L ) dx X

@ _y(x-1)
dx x(p+1)
Question 16:
: _ 2 441, .8
Find the derivative of the function given by S (x)=(1 +x}(1 K* }(]er ){] * ) and hence
find ! {”
Answer

()= (1 x) (148 ) 1+ ) 1+ 5%)

Taking logarithm on both the sides, we obtain

The given relationship is

log £ (x) =log (1+x)+log(1+x")+log(1+x*)+log(1+x)

Differentiating both sides with respect to x, we obtain
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1 d d o od d
. =—log(l+x)+—log(l+x* |+ —log(l+x' )+ —log(1+x"
) gl ()= g to () g tog(1ox%) 4o (1) - log (14:)
| d 1 ) 1 o
———I+_'+ 1+x° )+ 1+x* )+ 1+x
{ } f{) l+x oy 1) 14 x° n’r[ ) 1+x* .:,a’JL( ) 1+ x* a’x[ ]
1 | 1
.2 4x Bx’
7'(x)=. )[]+r I+ x° T+]+,sr* Jl+]+,":“ x}

l1+x 1+x° 14+x" 14"

: _f"(x}={l+.x}(1+x:}(l+.~:*)(]+.r3)[ |, 2% 4 | 8 }
Hence, j"{l]:{1+l}(l+|2)(|+]-l)[1+lﬁ]{ 1 ' 2x]) +4xl:‘ +3xl?1

1+1 1+ 1+1% 1+1°
=2x2x2x2|:l+i+i+ﬁ:|
2 2 2 2
:16){1+2+4+3]
2
=16x15=l2ﬂ
2

Question 17:

Differentiate (x; oo +3){""1 +7x+ 9}

(i) By using product rule.

in three ways mentioned below

(ii) By expanding the product to obtain a single polynomial.
(iii By logarithmic differentiation.
Do they all give the same answer?

Answer
Lety =(x"—5x+ S)[x" +7x +9)

(1)
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letx” —Sx+8=wandx' +Tx+9=v

RIS

dv
3_
d

X

dv
f—

dx

— dy =(2x* +14x° +13.x)—5.x-‘ —35.x—45+(3x* +?xf)—15x-‘ ~35x +24x° +56
dx

dv

dx

(i)

&
dx
&
dx

uv
- %-v+ - % (By using product rule)
:ix(_x2 —5x +8)-(.x‘1+?x+9)+(x: —5.}.7+E§)-%(.:4:3 +7x+9)

=(2x- 5](13 +?x+9) +(x3 —5x +8){3x3+ ?}

:Q.x[x" +?x+9)—5(x"‘ +?x+9]+x:(3xj +?]—Sx(3x: +?)+ E(Sx: +?)

= 5xt —20x% +45x° —~52x+11

y= (xz —Sx+ H](:..—R + T:r+9)
= x* (x“ + ‘?_r+'=}] ~Sx(x"+7x +'=)] +3(x"‘ +Tx4 9}

5
=X

+7x" +9x" = 5x' =352 —45x +8x" + 56x+ 72

=x =5x +15x" = 265" +11x+ 72

dy

d

22 O - 5xt 41550 2657 + 11w+ 72)

ey

[

disv cdion, cdisy oodian d d
E(_r ]—Ja(x )+ISE(I )-zﬁa[x ]HIE{X]J’E{?Z]

=5x = 5xdx  +15x3x" =26 2x+11x1+0
=53 —20x" +45x7 —52x+11

(iii) 7

)= (.r“ —5x+ B}{.t3 +7x +":1'}

Taking logarithm on both the sides, we obtain

log y = Iog{xl —5x+ 8]+ Iug,{x3 + ?x+9)

Differentiating both sides with respect to x, we obtain
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| av  d 2 i ]
“—=—logla = Sx+8)+—log|x +7x+0

vdx dx g( ) hx g( ]
1 dv 1 d ] d ;5

= —@}—:ﬁ—-—[x' —5x+8)+:—-—(x' +?x+@)
vdx x—-5x+8 dx X +T7x+9 dx

v 1 - 1 1
=y 2x - 3" +7
= }L:—SJHBX( * j}+x1+?x+"-}x( v )}

D . ‘ [ 2x-5 3x° 47
:>—=[x'—:ax+3)(x' +?x+‘}) x?j5x+3+x"j?:+9}

& &

(2x=5)(x" +7x+9)+(3x" +7)(x* - 5x + 8)

ﬂéiv:(x:—51+8}(x"+?x+9) - a
dlx [x'—5x+8](x' +?x+9]
N :zx(f +Tx+ 9]-5[f +?x+9]+3x3(x’ -5x+a]+?(f —51‘+E)
dx
¥ =(2x* +14x% +1 Ex)—jx-‘ —35x—45+ (3x* ~15x° +24x‘*]+[7f —353:-!—56)
dx
:»Q =5x" —20x" +45x" —52x+11
fray
v
From the above three observations, it can be concluded that all the results of dx are
same.
Question 18:
If u, v and w are functions of x, then show that
d i v W
—{H.l‘.‘tl'} = e VW A L — W Y, ——
dx dx dx

in two ways-first by repeated application of product rule, second by logarithmic
differentiation.

Answer

Lot VT UVWS u.(v.w)

By applying product rule, we obtain
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D _ M w)s wb (v w)

dlx r,ix.
dv  du dv aw . .

= =Wl — WY — Again applying product rule
o [ i i } (Again applying p )
dv  du dv dw

o = VW — WAV —
v dx dx ey

By taking logarithm on both sides of the equation? = #*** we obtain

log v =logu +logv+logw

Differentiating both sides with respect to x, we obtain

J.-‘

dv  d d o
—= logu )+ logv)+ logw
drdx[g]dx(g}dx{g}
I_ ﬂ la’u ldw lﬂ
vodx  uodx vdx wodx
L (Lde L L)
dv T hwdy vde wdx
DBy L, 180 1)
he wde vde wdx
dy  du dv dw
i e W WA e W Y
de  dx dx dx
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Exercise 5.6

Question 1:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx |

x=2at’, y=ar'

Answer

2

i H = 'j » — 4
The given equations are™ = <47 and y = ar

'I'hen_% = %{Zmz)= 2&-%(r3)= 2a-2r =4dat

rd d _ :
%=E{ar*)=a-a{ﬂ)=a-4-ﬂ = dat’

dy
cdy \ dt _4a:3_f:

Uy [aﬂr]  dat
cf

Question 2:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx

x=acosHB,y=>bcosb

Answer

The given equations are x = acos 8 and y = b cos 0

Then, 2% = %[a cos) = a(-sin@)=—-asinf

dd d
Y _ 4 c0s0)=b(-sin0) = -bsin®
40~ do

dy

| dv_[dﬂj_—bsin& b

“dr_[dr)_—asint?_a
de
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If x and y are connected parametrically by the equation, without eliminating the
4

parameter, find dx

X =sint, y = cos 2t

Answer

The given equations are x = sin t and y = cos 2t

- e d, .

I'hen, —=—[s1n.f]=::us.'
dr i

v

e ‘—:;[ccrs 2t)=—sin2t -;—‘:{2;] = —25in 2

["ﬁ} I
; —ai s T T S
cdy _\dr)_-2sin2t _-2-2sintcost _ y. )

" dx [uirj_ cost cost
ol

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dr |

4
x=4 y=—
'
Answer
4
x=4f and y=—
The given equations are l
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E:i{d‘.t]:-‘-
dit  drf
, f . .
() (1) 4[]
dt  dirly dr f i .
(&) (7)
d_\a) \r)_-1
dx dx] 4 F
ot

Question 5:

If x and y are connected parametrically by the equation, without eliminating the
A4

parameter, find dx |

r=cosf—cos2d, y =sinf —sin 20

Answer

The given equations are® = cosf —cos2d and v = sin# —sin 26

Then, dx _ i(msﬂ—cuﬁ 20) = i|:-::n:ms; &) - i(cus 26)
dé do do do
= —Sinﬂ—(—25i1123}= 28in 2@ —sin
& _ i[s;in 8 —sin20) = i(s,in d) —i(sin 26)
dé de dé de

=cos —2cos2d

dy
. :{v_[dﬂ]_cusﬂ—lmﬂﬁ
oy _(dx]_ 2sin 26 —sin )
| d&

Question 6:

If x and y are connected parametrically by the equation, without eliminating the
i

parameter, find dv

x=a(@-sind), y=a(l+cosd)
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Answer

The given equations are” u(i?—sm{)} and y = ”[] +cos0)

Then,% - a[%(ﬁ?]—;—fg[sin g}} =a(l-cosd)
%=ﬂ _%{I}H ;—H[cosé}]=a[{] +(—sind)|=-asin®
dv pain 0o O 0
dy_\do)_ -asin6 :-5:,11121:1:-52:-{:«:152:_1:(“E
; dx E] (J{]—COSQ} jsinzﬁ SiI'IE 2
el 2 2

Question 7:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx

sin’ t cos’
Xr= . J.-‘ =
v.,l'l cos 2t \."I cos2f
Answer

The given equations are veos 2t
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dt  dt| +Jcos2¢
JJeos 2z - %(sin" 1)— sin’ ¢ - % Weos 2

cos 2t

= 3
Thendx i{ smf}

) d
Jeos2r-3sin’ 1 (sint)—sin” 1x— —— .~ (cos 2t
. dr{ } zm,er d"{( ]

-::03 2t

1«#1.,0521 -sin” rwa——. —2sin 2t
24Jcos2y ( }

cos 2t
~ 3cos2ssin’ fcost+sin’ fsin 2
C0s 26-/cos 2t

e{v_d{ cos’ 1 :|

dr dt

dcosm,%(cus‘ .r}—-.:qcus1 t- %(u‘ms 2t )

dt +Jcos 2t

cos2i

) v‘casZL}coszf~%{cos:}—cnsjf zm . (0052.'}

cos 2t

\ ) | )
3Jeos2r.cos’ t(—sint)—cos® t+———— .(—25sin2¢
_ ( ] 2aJeos 2 [ }

cos 2t
—3cos2t.cos’ t.sint +cos’ 1sin 21

N cos2f-+/cos 2t
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cy
cdy \dt) -3cos2icos’rsing +cos’isin2

Cdx [uﬁr] 3cos 2t sin’ 1 cost +sin’ 1sin 2
i

~3cos 21,cos” f.sinf +cos” 1(2sinf cost)

3cos2isin’ fcost +sin’ (2sint cost)

sind cosf [—3005 2¢ cost + 2 cos’ f]

sint cnsr[i’rms 2t sint +2sin” r]
[—E[Ecas: f— l)cmsr +2cos’ :] cos 2t =(2cos’ 1 - l],

[S[I—Esin2 r]sin|r+25i|13.'] cos 2 :{1—25in3:)

—~deos’ f +3cost
3sins — 4sin’ 7

—C0s 31 cos 3 = 4cos’ 1 —3cost,

sin 3 sin 3 = 3sin? —4sin’ ¢

—cot M

Question 8:
If x and y are connected parametrically by the equation, without eliminating the

dy

parameter, find dx

I .
xX= a[cosr - logtana], y=asint
Answer

t .
x= u(msr +1ogtan—] and y = asint
The given equations are 2
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dx d d f
Then,—=a | —(cosr)+—/| logtan—
dr [d.r( ) u’r{ = ZH

. 1 d i
=q|—sinf+ T tan;
tan I 2
L 2
. ! S d [
= | =810 4+ col — -seg .
2 2 g\ 2
[ . -|f
. cos | '
=g|—sinf+ & " —
. 2 2
sin cos
L 2 2
o ]
=gl —-sinf+——— ——
.; /
2sin—cos
L 2 2
. 1
al —sinf+——
sin/
B —sm.r+l
sind
cos”
=q—
sint
dv d ., .
i=a—(sm.'}=c.'-:-::us.r
ddf el
Gf}'\'
dy [(ﬁJ acost _ sint
L= = ~ =tanf

'E_[ri\‘)_ ﬂmszf ~ cost
dt sin

Question 9:

If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find dx |

x=asecfl, y=bhtan(
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Answer

The given equations are™ ~ 95¢¢ ¢) and y = btan &

cx d
Then, — =a-——(sec#)=asecHtané
di dd

b _p. 4 —(lanﬂ) bsec’ 6
b [v)
[aﬁj]
I_Iﬂfvz dé ) _ bsec O =bsec€mt€= bmst? =i:-\l'< .I =bmsec€
dx [dx] asecftand a acosfsing a sinf  a
di

Question 10:

If x and y are connected parametrically by the equation, without eliminating the
4

parameter, find dx |

x=a(cosf+0sind), y = a(sin@—Ocosd)

Answer

The given equations are ™ a(cos+0sind) and y = a(sin@— G cos )

Then, & _ a[i cos +—{t‘? sin ﬂ}i| |:—sin()+ ﬂi{sin )+ sin {?i{ﬂ}:|
dé dg de dd

= a[-sin @+ cos & +sinf| = ad cos @
A

0" a[;; (smﬁ)——g [Hmsfi‘]} = a[cnsﬁ —{9%[6059”%59‘%{3}}}

=alcos @ +0sind —cos 0|

=aflsin @
dv
oy dﬂ‘J afdsin#
o= = tan #
dx [dx] af cos
de
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Question 11:

x=+a™ "', y=+a* *, show that %= L
If

Answer

X

The given equations are™ Z\’{ﬂ'— and y = \."a—
X = ‘J{F and _V = \IIIF

::-x:[

1 |
a;in r)] Hl'ld_]f':(ﬂcm r)]

| I 1 1
g Sons

= x=al and y = a’

[
s

Consider x = a*

Taking

logarithm on both the sides. we obtain

1.
lug.r=;sm tloga

1 ey

Cxodi
dx

dt
dv

df

I d .
= zluga-m (sin”'¢)

x]uga :
2 Vi1’

xloga

W=

| 1
cos”'f

Then, consider y = a*

Taking logarithm on both the sides. we obtain

|
log_v=5cos floga

= =%]0ga~%(cos '.')

_}»luga{ -1 ]
2 Vi-r*
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1-fﬁ'_[ﬂf‘f]_[ xluga J_ x
at) \ 21—

Hence, proved.

o (3.5,
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Exercise 5.7

Question 1:

Find the second order derivatives of the function.

4+3x+2

Answer

LetV =X +3x+2

Then,

Q:i ! ig. igzg. 340 =2v4+3
o dx(x]+dr{‘1]+dr{} x+340=2x+"
Lfflyzi,.} - :i-‘; i =2 —
e dx[_x+_~,~) dx{_x}+dx{_] 240=2

Question 2:

Find the second order derivatives of the function.

20l
X

Answer

_ L

Let) =¥
Then,
ﬁ — i{x]':l ) — zﬂxl‘}
dv  dx
dy d

5 =—(20x") =zui{x”)= 20-19- x'® = 380x"
dvs dx oy

Quest 3:

Find the second order derivatives of the function.
X-COSX

Answer

LetV = ¥-COSX

Then,
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vood i i . .
ﬂ:E—{Jm.:u:;.r}:r.:n;:-:-;x~E—{x}+xE—{:.:ulsx}:4::*::-51'-I+x[—3mx):;:';:vsx—xsnwx
dy dx ofx ofx
d’y d . d d .
so—==—/|cosx—xsinx|=—(cosx)-—(xsinx
e a'it[ ] a"x{ ) f.’.h:{ ]

= —sin.x —[sin x~;—i(x]+.~: -i(sinx)}
= —sinx—(sinx+xcosx)

= —(xcosx+2sinx)

Question 4:

Find the second order derivatives of the function.
log x

Answer

Let.y = logx

Then,

dv d 1
— =—(logx)=—
dx dx{ g } X

.|

_d')«‘:i[ljz—l
Cdet de\x x

Questi 5:

Find the second order derivatives of the function.

x' log x
Answer

3 .
LetY =% log x

Then,
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dv  dr s d o . d
— =—|x logx |=logx —(x" |+x -—(logx
dx de: g ] e dx( ) a’.x[ € ]

. ] L
=logx-3x" +x - —=logx-3x" +x°
X

=x"(1+3logx)

cd'y _d
Uy’

= [x" (1+3 Ingx]]

=(1+ 3lug_r)-%(x3 } +x° i[l +3logx)

v
5 3
=(1+3logx)-2x+x"- =
X
=2x+b6xlogx+3x

=5x+b6xlogx
=x(5+6logx)

Question 6:

Find the second order derivatives of the function.

e" sin5x
Answer
Let) =€ sin5x
i = ;; (e sin 5x) = sin 5x- ;i (e7)+e" ;; (sin5x)
=sin3x-e" +e¢"-cosSx -%(Sx] =¢"sinS5x+e" cosSx-3
=" (sin 5x + 5c0s5x)
j{’ = r: [e” (sin5x + 500551]]
k®  d
=(sin5x+5cos 5x)- d (e'}+ er- d (sin5x+5cos5x)
dx dx
=(sin35x+5cos5x)e’ +e* [cosﬁx- i{ix}+5 (—sin5x)- i{ﬁx]}
dx cx
=e"(sin5x+5cos5x)+e* (5cos Sx— 25sin 5x)
A =e"(10cos5x—24sinSx) = 2¢" (Scos Sx —12sin5x)
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Question 7:
Find the second order derivatives of the function.

" cos3x
Answer

— O .
LetV =€ cos3x

Then,
j'; :x[e“-cas}x) cﬂst-dx(e""]+e‘“~;(msix]
cos3x-e™ -%{ﬁx] +e™ - (—sin3x)- %[lx}
6e™ cos3x —3e™ sin3x (1)
jr"' - ;‘; (6¢" cos3x —3e* sin3x) = 6- ;‘; (e° cos3x)-3- ;‘; (e sin3x)
=6-[ 6¢* cos3x —3¢" sin3x |3 sin 3x-i(e'“‘)+e“ -%{sin.’!x} | [ Using (1)]

36e™ cos3x —18¢™ sin3x —S[Sin 3x-e™-6+e™ --::053,1'-3]
36e™ cos3x — 18" sin 3x — 1 8™ sin 3x — 9™ cos3x
272" cosdx — 36 sin 3x

=0p*" (3 cos3x —4sin 3_r]

Question 8:

Find the second order derivatives of the function.
tan” x
Answer

Loty =tan ' x

Then,
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Q:i[tan Ix]: ] -
v dx 1+ x°
d'y d 1 d 2y w2t d )
So——=—| —— |=—(1+x") =(-1){1+x") -—(1+x
dx’ dr(l+x1] .:ix( ) ( )( ) :ir( ]
- _1
= I 2 sz = -'t 2
(l+x:]_ (I+x2)_
Question 9:

Find the second order derivatives of the function.
log(log x)
Answer

Lot = log(log x)

Then,
dy d -1
—=—/log(logx) =———(logx)= xlog x
= oL log(logx)] { x) = ——=(xlogx)
% = %[(1 Iug_r}_l:| =(-1)-(xlog x]_2 %{x log x)
S [Iogr —(x)+x- i{lﬂgx]}
[ Ingl] dx
__—1 |:]Gg I |+x i| M
[ Ingl] X x]ngl}
Question 10:
Find the second order derivatives of the function.
sin(log x)
Answer
Let? = sin (log x)
Then,

Page 107 of 144

Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers



§ eVidyarthi

FREE Education
Class XII Chapter 5 - Continuity and Differentiability Maths
dy drp. . d ~ cos(logx)
o E[sm (log x}] = cos(log x}-E(Iog X)=———+
cdy _d cos (log x)
Ut de x
o d
i x -E[cus{logx]] —cos(log x}a (x)
x]
. d
X [—sm (log x)- i (log x}] ~cos(log x).1
= x:
—xsin[lugx).l—cns(lugx]
_ X
= =3
~[ sin(logx) + cos(log x) |
= =
Question 11:

1f¥ =cosx—3sinx , prove that ax’

Answer

It is given that, ¥ ~

Then,

b

dy

+y=10

Scosx—3sinx
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dv d .. d . d d .
—— =—(5c05x)——(3sinx)=5—(cosx)-3—(sinx
dx dx( ) dx( } u’x( } dx[ ]
=5(-sinx)-3cosx =—(5sinx+3cosx)
d*y

o= di[—[s sinx +3cosx) |
e d
= _[5 : ;i[sin x)+ 3-%{msx]}

- —[Scosx+ 3(—sin r]]
=—[5cosx—3sinx]

= —J:
d’y

" dx

Hence, proved.

+y=10

Question 12:
[fy=cos ' x, find 9" in terms of y alone.
Answer

Y -1
It is given that, V' = 0% ¥

Then,
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-1 -

== - A1)
dx (I _x:)-
V=008 X=X =C0sy
Putting x = cos y in equation (1), we obtain

d’y  —cosy
T 3
e NL —cos’ y)
d'y  —cosy
= 5= =
J(sinzy]
_ —cosy
sin’ y
_Ceosy 1
siny  sin’ y
d’y \
= — = —cot y-cosec” ¥
clv
Question 13:

¥ =3cos(logx)+4sin(logx) Xy, 4xy +y=0

If

Answer

, show that

It is given that,” = 3cos(logx)+4sin(logx)

Then,
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dr dr.
n=3— ces(logxﬂ—4-E(sm{legx}—|

=3 —sin{logx i logx) |+4-| cos{logx i log x
dy dx

3sin(logx) 4cos(logx) 4cos(logx)-3sin(logx)
+

x x X
o d (41;L15[]ugx]—35in (]ugx}\
T dx | x J
x{4cos[]ugx} 35in[]ngx}}' {4:;:15(|0gx] 3sin (logx]}{rr
o
x 4{cos[logx}}l ."a{sin(lu:nvgx]}r {4cos(logx)-3sin(logx)}.1
x{—dfsin(log x].[lcrgx}I—3ces[logx].{lcrgx};‘—4cns{]0gx}+351n(lﬂg x)
x[ 4sin(logx). : Sczxs(lr.:-gx]_] 4cos(logx)+3sin(logx)
x x
¥
~ —4sin(logx)-3cos(logx)-4cos(log x)+3sin(log x)
= =
~ —sin(log x)—7cos(logx)
- x.1.
Xy Y
e . I A T - S K
=X1L mn[lt}gr} ﬂ?-;mlllugx} +x£4uu{|0gx] 3sin {Iogx] —3605[105 x':l+4sin{10g, r]
& ) . )

= —sin(logx)—7cos(logx)+4cos(log x)—3sin(logx)+3cos(log x) + 4sin (log x)
=0

Hence, proved.

Question 14:

-

d ‘f—{m+n}@ +mny =10

ifV =Ae” +Bev, gpow that dx’ dx
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Answer
It is given that, ¥ = 4€" +Be”
Then,
b A -i(e’“‘ )+ B- i[e"’) =A -e"“.i(m] +B-e" ~i(m') = Ame™ + Bne™
dx elx el dx o
d 'f = i(f!me”'” + Bne”‘) = Am-i(e"“)+ Bn-i(e'“)
dx™  dx dx elx
T d HY d T 2 ORI
= Am-e" —(mx)+ Bn-e™ -—(nx) = Am’e" + Bn'e
elx dx
d’y

—[m+n}£+nmy
elx

-

= Am’e™ + Bn'e" —(m +n)- (Ame“' + Bne™ )+ mn ( Ae™ + Be’”]

x

2 r 2 2 _Hi 1 I 2 _nx r 1
= Am e™ + Bne™ — Ame™ — Bmne™ — Amne™ — Bn-e™ + Amne™ + Bmne"
=0

Hence, proved.

Question 15:

Y _ 49y

If:}' = Sm}:’." : +{){IU{:'_.I.T , show that d:_!c"

Answer
It is given that, ¥ = 500e™ +600e ™
Then,
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& sm},i(eT ) +ﬁuui(e )
dx ey : dx

X

=500-¢™ -i(?x]+f.uu~e ” ~i(—7x}
dx
=3500e™ —4200e™"
dy

vean. 4 (o d( s
= 3500-—(e7) = 4200.—(e ™)

- _— d
=3500-¢"", —(Tx)—4200-¢"" - —(-T:
c d.r( x} ¢ a’x{ T}

=T7%3500-” + 7% 4200-¢ 7"
= 49%500e™" + 49 % 600e 7"

= 49(500¢™ +600e ™)
=49y

Hence, proved.

Question 16:

d'y [ﬁ]_
¢ (x+1)=1 , show that ¢ L.dr
Answer

2 (x+1)=
The given relationship is" (x+1)=1

e’ (x+1)=1
. |
=gl = —
x+1

Taking logarithm on both the sides, we obtain
1
y=log——:

(x+1)

Differentiating this relationship with respect to x, we obtain
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Q:[x.yl}i L :[:'7:4.[]r —1 1:__I
dx ax x+1 {x+]}' x+1

,Q__i[l]__ -1 |1
oy’ dvl x+1 {x+|}: (:c+|]:
dx x+1

d’y [ dy T
= —=| =
dax” dx

Hence, proved.

Question 17:
= (tan" x}g’ show that(x: + I}J v, + lx(x: -+ l}y, =2
Answer

y=(tan" x}’
The given relationship is” { }

Then,

y, =2tan”’ .TiT(IﬂII_I x)

~ 1
=y, =2tan" x. o
+x°

= (1+x%)y, =2tan"' x

Again differentiating with respect to x on both the sides. we obtain

{|+x'3]_1'1 +2xy, = 2[]+If }

::v{l-i-ij]2 ¥, +2.‘r{|+x3}_v, =2

Hence, proved.
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(x)=x"+2x-8 ,xe[-4,
Verify Rolle’s Theorem for the function"f{T] vAaN-s YE[ 4 2]

Answer

f(x)=x"+2x-8

The given function, , being a polynomial function, is continuous in [—4,

2] and is differentiable in (-4, 2).
)=(-4)" +2x(-4)-8=16-8-8=0
f ] {2}+7x* ~8=4+4-8=0

~f(-4)=f2)=0

= The value of f (x) at —4 and 2 coincides.

f'(c)=0

Rolle’s Theorem states that there is a point c € (-4, 2) such that"

fx)=x"+2x-8

= f'(x)=2x+2

- f'(c)=

=2c+2=0

= ¢ =-1, where ¢ =—1 F{—d,l)

Hence, Rolle’s Theorem is verified for the given function.
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Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say

some thing about the converse of Rolle’s Theorem from these examples?

S (x)=[x] forxe[5, 9]

(i)
(i) f(x)=[x] forxe[-2, 2]
(i) fx)=x"-1forxell, 2]
Answer
By Rolle’s Theorem, for a function"fl:[a' b] —R , if
(a) fis continuous on [a, b]
(b) fis differentiable on (a, b)
(c) f(a) =f(b)
'(e)=0

then, there exists some c € (a, b) such that -

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of

the three conditions of the hypothesis.
0 S (x)=[x] forxe[5, 9]
It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5and x =9

= f (x) is not continuous in [5, 9].

AIHU,_}"{E}I = [5] =5 and_f{‘?ﬂ] = [9] =9
. f(5)= £(9)
The differentiability of fin (5, 9) is checked as follows.
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Let n be an integer such that n € (5, 9).

The left hand limit of /" at x = n is.

(n+h)— + h|- ~1- -
A Gt S O AL ol P o o s B
=il h =l h fy—ll II'I Tr—il Iﬁ

The right hand limit of / at x = n is,

. fin+h)—fn o An+h|=|n , - ,

]1m"( )=/ ( }=I|n1[ | I]:hmM " fim0=0

fi—s ¥ h [ h bl fp sl

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

Hence, Rolle’s Theorem is not applicable for"f {T] :[,'c] h:nrxe[i, (J].

(i) f(x)=[x] forxe[-2, 2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [—-2, 2].

Also, f{—?} = [—2] ==2 and_f{Z} = [2] =2
“f(-2)=1(2)
The differentiability of fin (=2, 2) is checked as follows.
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Let n be an integer such that n € (-2, 2).

The left hand limit of /" at x = n is.

(n+h)— + h|- ~1- -
A Gt S O AL ol P o o s B
=il h =l h fy—ll II'I Tr—il Iﬁ

The right hand limit of / at x = n is,
. fin+h)—fn o An+h|=|n , - ,
]1m"( } '“: }=I|n1[ ] I]:hmM “:hm[}:ﬂ
fi—s ¥ h [ h bl fp sl
Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

f(x)=[x] forxe[-2, 2].

Hence, Rolle’s Theorem is not applicable for

(i) f(x)=x"-1forxe[l, 2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and is
differentiable in (1, 2).

f()=(1y-1=0
(2)=(2) -1=3

~fF (1) #f(2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem.
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Hence, Rolle’s Theorem is not applicable forf[x}: v —lorx E[]’ 2].

If / :[_5‘5]_} R is a differentiable function and if / {-IJdoes not vanish anywhere, then

f(=5)= 1(5)

prove that .

Answer

/i[-55]>R is a differentiable function.

It is given that
Since every differentiable function is a continuous function, we obtain
(a) fis continuous on [-5, 5].

(b) fis differentiable on (-5, 5).

Therefore, by the Mean Value Theorem, there exists c € (=5, 5) such that

’ f(5)-f(-5
PRRLCTIS

=10f"(c)= f(5)- f(-5)
/'(x)

It is also given that - does not vanish anywhere.

L (e)#0
=10f"(c)=0

= f(5)-fF(-5)=0
= f(5)# 1(-5)

Hence, proved.

f(x)=x"-4x-3

: ) . . . b
Verify Mean Value Theorem, if in the mterval[” ], where

a=lgngb=4,
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Answer

The given function isf [Tj =x —4x-3

f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4)
whose derivative is 2x — 4.

.f{]]:]: _4X]_3=_{’~.f{4}=42—4x4_3=_3

S(b)=f(a) _ 1 (4)-1(1) _ 3-(=6) _

=" =]
b—a 41 3

o | tud

f'(e)=1

Mean Value Theorem states that there is a point c € (1, 4) such that"

f'e)=1
= 2e—4=]

, where ¢ = % S [1, 4}

il

=c=

2 |

Hence, Mean Value Theorem is verified for the given function.

x)=x'—5x" -3
Verify Mean Value Theorem, if"f{ﬂ|I ' ' ‘ in the interval [a, b], where a = 1 and

b = 3. Find all “€ 13 tor which /() =0

Answer

x)=x'—5x" -3
The given function fisf{r} ¥ —OxT —ax

f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3)
whose derivative is 3x* — 10x — 3.

F()=1=5x1"=3x1==7, f(3)=3"-5x3"-3x3=-27
F(B)-1(a)_FO)-L()_27-(-7)
. h—a i-1 3-1

10
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. . _,r‘"{c'}:—IU
Mean Value Theorem states that there exist a point ¢ € (1, 3) such that® *
f'(e)=-10
=3¢’ —10ec-3=10
=3¢’ —10c+7=0
=3¢’ -3c-Tc+7=0
=3c(c-1)-T(c-1)=0
=(c-1)(3¢=7)=0
7 7 .
=c=1, —, wherec=—¢e(l, 3)
3 3
7 .
c=—=|(l, 3
Hence, Mean Value Theorem is verified for the given function and 3 is the
f'(c)=0

only point for which*

Examine the applicability of Mean Value Theorem for all three functions given in the
above exercise 2.

Answer

Mean Value Theorem states that for a function / :[”' b] —R , if
(a) fis continuous on [a, b]
(b) fis differentiable on (a, b)

ey L (0)=1(a)

then, there exists some c € (a, b) such that b-a

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy

any of the two conditions of the hypothesis.
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(0) S (x)=[x] forxe[5, 9]
It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5and x =9

= f (x) is not continuous in [5, 9].

The differentiability of fin (5, 9) is checked as follows.

Let n be an integer such that n € (5, 9).

The left hand limit of /" at x = n is.

\n+h)— +h|- - = _
A Gt S O AL ol P o e B
=il h =l h fp—1l II'I Tr—il Iﬁ

The right hand limit of / at x = n is,

i LR =S () [t =[n] e

fi—s ¥ h h—sly h bl fp =)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

S(x)=[x] forxe[s, ‘)].

Hence, Mean Value Theorem is not applicable for
(i) f(x)=[x] forxe[-2, 2]

It is evident that the given function f (x) is not continuous at every integral point.
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In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [-2, 2].

The differentiability of fin (=2, 2) is checked as follows.

Let n be an integer such that n € (-2, 2).

The left hand limit of /" at x = n is.
. ) 1 o )
L CRl) S A 0 B (C500) b ) D ) T B

= lim = lim —=m
=l h f1—ll h =) Ill!' Jr—il l||'r

The right hand limit of /" at x = n is,

L Gt o O AL b )

[ b By’ h h—s) h

IIirp 0=0

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

f(x)=[x] forxe[-2, 2].

Hence, Mean Value Theorem is not applicable for
(i) Sx)=x"-1forxe[l, 2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and is
differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.
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Hence, Mean Value Theorem is applicable forf['r}:x ~lor J‘E[]’ 2].

It can be proved as follows.
f()=r-1=0, f(2)=2"-1=3
S(B)-f(a) £(2)-F(1) 3-0

= = :3
h—a 2-1 1
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Miscellaneous Solutions

Question 1:
(3x* —9x+5)
Answer

- L]
Lety = (3x" —9x+5)

Using chain rule, we obtain

dv_d

= “(3x* ~9x+5)

£

(3r —Ox+5 (31" -9x+5]

]

)
( X —‘EIJ|:+S]Is 6x -9
(31: —9x+"'r] 2): 3}

= {:x —‘}'x+5) (2x-3)

Question 2:
sin’ x+cos” x

Answer
Let y =sin' x+cos” x

dv d
S d*; ir[sm x)+a(ms x]

= 3sin’ x-%(sinxhﬁcass x- i{u::::-sac]‘p
=3sin” x-cosx+6c0s” x-(—sinx)

=3sin xmsx{sinx— 2cos’ x}

Question 3:
{Sx}hml‘c

Answer
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Lety = (5x)""*

Taking logarithm on both the sides, we obtain

log y=3cos2xlog5x

Differentiating both sides with respect to x, we obtain

}i% = s[lgg_ﬁx .%[co:;?x] +cos2x -%[lﬂgix}}

dx S5x dy

- . _ cos2x
= —=3y| -2sin2xlog5x +
dx L X
; [cos?
:}ﬂ:}_}: 2 €05 2 —ﬁsinlxlf}gﬁx
dx . X

ﬂ _ {Sx}.’lcns!x {.:rmsh

—fHsin2xlog Sx]
elx

X

Question 4:
sin”' (hg‘:) O=x=1
Answer

Lety =sin™' (.r \-":]

Using chain rule, we obtain

Y _ 3| log5x(—sin Ex}-i{lﬂ +cos2x: - i(Sx]
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%:%sin"(rﬂ)
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X
cos
2

Lety= =

J2x4+7

By quotient rule, we obtain
d X _
N2x47 [cus ' ]—(cus
dy _ ix 2
o (Vax+7)

aam

-1 d|x i 1 d
J2x+ : - 2x+
2x+7 ( ] [cos ]2 5r7 dx (2x+7)

—~2x+7 cos: 2
\Jﬁx[lsw?) (m)[21+?}

cos' ¥
_ 2

1
=_ + ==
V=2 2x+7 {2x+?)5

Question 6:

| 1+sinx ++/1-sinm
cot ,{J{x{E

\I'[|+$i]'l_1£' - y"ll-sinx

Answer
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| A1+sinx +1-sinx
Loty =cot| YLHSIE + V1= 1)
Jl+smx—1..'fl—smx

+ I .
J]+s1nx+\fl—:qu
] .
1..'r]+51nx —Jl—smx
2

B {Jl+sinx+xfl—sin_x]_
- (J1+5in,x—\frl—$inx)[wfl +sinx+~.fl—sin,x}

; (1+sinx)+(1- 5inx}+2J(1 —sin.x)(1+sin x)
(1+sinx)—(1-sinx)

Then

_ 2+24l-sin"x
- 2sinx
_I+cosx
 sinx

2cos’
2

. X X
2sin " cos
2 2
X
= cot —
2

Therefore, equation (1) becomes

¥ =cot '[cotf]
2

X
= y=—
2
dy 2 dx
A _1
ax 2
Question 7:

(log x}msx x>l
Answer

Let vy = { log _r}lﬂh
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Taking logarithm on both the sides, we obtain
log y = log x-log(log x)
Differentiating both sides with respect to x, we obtain

dy_d
s .:ﬁ-[mg'r log(logx]]

=19~ oglog ) (lopx) og.x g g )

= d} :_v[lug[lug_r).l Flog x - |D;J: : ;il:lugx}}
dy | |
= —=y|—log(logx)+—
dx '{x g[ . r) x}
dy wee| 1 log(logx)
o= =log: —_——
alx [ o8 'r) {r X

Question 8:

cos|acosx+hsinx
l: ], for some constant a and b.

Answer
Let y = cos(acos x+bsinx)

By using chain rule, we obtain

@ _ —cos(acosx+bsin x)
dv dx

:;ﬁ = —sin (acr:rsx+bsinx}-i[umsx+bsin x)
v dx

=—sgin [acﬂsx+hsinx}-[u(—sin x}+bcosx]

=(asin x —bcosx)-sin(acosx +bsinx)

Question 9:

}[tin e | o 3][

(sinx—cosx R En:x-c:—

Answer
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. sinx—oosx)
Letv= {5111 X —C0s x}[

Taking logarithm on both the sides, we obtain
. {sin x—cosx)

log y = Iog[l[smx—cosx }

= log y =(sinx—cosx)-log(sin x —cos x)

Differentiating both sides with respect to x, we obtain

ldy _d {sinx— Cos .x]lug{sin X —COs t}]

y dx dx

= i % = lcg{sin X —C0s x]l -%(sinx —cosx] +(5i11 X—C0os x] -%lcgfsinx —CO5 .T}

L. log (sin x —cos x ) -(cos x +sin x)+(sin x — cos x)- !

—-i(sin X —Cos X)
v dx (sinx—cosx) dx y '

= % = (sinx—cosx)"" [ (cosx +sinx)-log(sin x —cos x) +(cosx +sinx) |
o

& =(sinx—cosx)
X

[smx—cosx) {

cos x +sin.x)| 1+log (sinx - cosx) |

Question 10:

X a x &a
X4 x"+a +a’ for some fixed 4> 0ang x>0
Answer
Lety=x"+x"+a" +a"
Also.letx" =w. x" =v. @’ =w, anda” =5
L¥=u+vHw+s
dv  du dv dw ds
= = —— 4
de  dv dv ode dx

K

UH=Xx

(1)

= logu =log x*
= logu = xlog x

Differentiating both sides with respect to x, we obtain
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1 ofu d d
———=logx-—(x)+x-—(logx
i dx £ a{r{ ] dx( }
d 1
= —=u|logx-1+x-—
elx x
du .
==X [log x+1]=x*(1+logx) -(2)
X
p=x"
dv d
.',—1=—|[x”)
dx  dx
dv i
= —=qax" 3
0 (3)
w=a'

= logw=loga’

= logw=xloga

Differentiating both sides with respect to x, we obtain

1 a’w_ID p o [x}
Wy & dx
dw
= —=wloga
dx
adw
=—=a'loga .
dx @ 108 { )
s=a%

Since a is constant, a° is also a constant.

ds
. odx

0 (5)

From (1), (2), (3), (4), and (5), we obtain

av

:_]_"'

=y (1+logx)+ax™" +a* loga+0
= (1+logx) g

(1+logx)+ax™" +a" loga
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Question 11:
Answer

Lety= x4 (x —E}V:
Also, let u = x* ~ and v = {x—?r}":
LV=u+v

Differentiating both sides with respect to x, we obtain

@ _du o )
de  dv oy
w=x""

s logu = Iog(x*:"‘)
logu = (x* - 3} log x

Differentiating with respect to x, we obtain

1 du d ;o4 N d
;.E:IHEI.E(X__B]+(I —3}-3(11151'}

1 du 3
:t’EE:Ichx-Ex+{x —..‘.r}'

I_% .:_3
:>di:.r‘ __{r +2x10gx}

M | =

dx x
Also,
p=(x-3)"
~logv=log(x —3]”:
= logv=x'log(x-3)

Differentiating both sides with respect to x, we obtain
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1 dv d o . d
——=log(x=3)-—(x |+ x  —|log({x-3
Loy (v-3) 4 () "L rog(x-3)]

]d"" r ] d
= ——=log(x-3)-2x+x  ———(x-3

v dx gl: } x—3 x{ ]

.1'2

= —=v|2xlog(x-3)+ -1

X [ e ) x=3 }

dV X .
= —=(x¥-3) | —+2xlog({x-3

By | gaston(s-)

ﬁam:lf

Substituting the expressions of dlx dx jn equation (1), we obtain

2

Y_ }{I-_3+2x10gx]+[x—3}x:[ * 3+2x1-:-g(:u—3‘»}}
x X =

dx
Question 12:

/4 y:IE(]—cnsr}*lef}{r—sinf}*—gﬁf::.E
Find d¥ | if 2 2
Answer

It is given that, y =12(1-cost),x =10(f —sin¢)
% = %[H}(r—ﬁinfﬂ=I{]-%[r—sin.*] =10(1-cost)
% :%[Il{l—cusr]]: 12-%{14:.3:}: 12:[0—(=sint)]=12sint

[@] 12-2sin " -cos
cdv \di)  12sine TSNS g

S = - = =—cot—
dx [QJ lﬂ(]—me} H}'ESinzi 5 2
dt 2
Question 13:

aﬁ.‘

Findﬁl if y=sin"'x+sinyl1-x", -1=2x<1

Answer
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It is given that, y =sin ' x+sin ' 1-x*

dx
_ Ay
dx
dy

,d}’_i p : 2
,.—_dx[sm "y +sin' A1-x }
=%(sin lx)+di(9.in '\H—xz)

(V1)

:}E:Jl—xz Jl—(ﬁ]z dx

ﬁ: 1 — _|._]_. ] -i(]—.\"z)
de J1-x? x 21—y dx
dy ! I
= == + (—21’}
dx \u'[]—x: 2x\.|'r]—x:
S S
dx 1—x° | —x°
PR
dx
Question 14:
Iy + vl x :U, for, —1 < x <1, prove that
&__
e (1+x)
Answer

It is given that,

I+ y+yJdl+x =0
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S FETRI
Squaring both sides, we obtain
¥ (14y) =y (1+x)
S +xy=y +
= x? =yt =t —xly
=x' -y’ = xy(y-x)
= (x+y)(x-y)=w(y-x)
SX+ Y =Xy
= (l+x)y=—x

-x

(I+x}

Differentiating both sides with respect to x, we obtain

::,-]_r:

Y1)
ary__(]+x}%[""}_x%{l+x)__(l+x]—.‘~: 1

dx (1+x) T () (1)

Hence, proved.

Question 15:

If{'jr —a) +(y-b) = , for some ©~ 0, prove that

d’y

dx” is a constant independent of a and b.

Answer

It is given that,{x —a}' +{}-‘ —b}' =

Differentiating both sides with respect to x, we obtain
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o |: 3i| o |: :i| d ;o
x—a) |+ v=b) |=—|c"
dx [ } dx ( } ce’x{ ]

faj: 3 —(:c—a]

Sa b (1)
.sfv_i ~(x-a)
de’ dx| y—b
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(3-0) 4 (x-a)~(x-a) L (v-1)
(v-b)

(r-6)-(-a)-2
(v-b)

_{}’_b}—[x—g}.{_[x_a}}

y=b

- . [Llsing (l}]

T 3 {.‘E—.ﬂ)z 2 (}"—b)2+{,‘|,‘—a}1 2
o, bl [
e ‘[[}'_b]l+[x‘”f} {{}J_b)ﬁ{x-af]

(y-b) (v-b)

3

=

c

(y-b)  (v-b)

= —¢, which is constant and is independent of o and b

Hence, proved.

Question 16:

dv cos’(a+y)
=) + v _a - i
1f “O8Y veos(a+y }’with cosa # tl, prove that & sina

Answer
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It is given that, cos y= xms(ar+ y]

T

dy

= —sinyI‘: =ms{a+y)-%{x]+x-%[ms[a+y]]

= —siny® =~ cos(a+ y) - [-sin(a+ )] 2
X

= [xsin[a+ ¥)—sin y]—di =cos(a+y) (1)
. cos y

S - P = P N =
ince cosy=xcos(a+y). x cos(a+)

Then, equation (1) reduces to

cos y
cos(a+y)

]

i';i =cos(a+y)

-sin(a +_}'} —sin y

= [cos y-sin(a+y)—siny-cos(a +_v}:|~ j—‘]’ =cos” (a+y)
x

dy

=5 sin [a+y—y]d— =cos” (a+b)
X

; g” h
::.d__},:cna {a+ ]

dx

sina

Hence, proved.

Question 17:

If

Answer

x=al(cost+1sint)

d’y

v=alsint—rcost) _ 2
- ( }, find dx

and
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It is given that, x = a(cos s +tsint) and y = a(sins —f cost)

dx d -
S =a-—(cost +1sinr)
dr dr
. . d d .
= a[—smr+5|nr-E(r)+I-E(sm:)j|
= a[-sint+sint +tcost] = at cost
@

d .
=a-—(sinf —rcost
v )

= alcas: - {cosr -%{r}+ t ~%{GGSI)H

=a[cas:—{cosr—rsinr}] = aisint

)
.ﬁ= dt _ae‘sin:‘:

dt

s - = tanf
dx [QJ al cost
dt
Then, d 'F=1[Q]=i{tam)=seczf-£
dx” dxl dx o dx
) |:dx dt 1 :|
=sec” |- — =alcosl = —=
ar cost et dx  arcost
ZSEC'I!‘U{E{E
ar 2
Question 18:

. L 51
If"'r {t] —|x| , show that / {x}exists for all real x, and find it.

Answer
x, ifx=0
M=1_% ifx<0
It is known that, e
" _ 1 _ __:I
Therefore, when x = 0, f(x) =[x =x
In this case, S {x] =3I_and hence, f"(x)=6x

3

When x < 0, _f'{x}:|x|] =[—x}] - —x
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In this case, /'(x)= _j‘t_and hence, I"(x)

Thus, for"Ilr {t} =|.r| , J {I}exists for all real x and is given by,

f'"{} ox, ifx=0
x)=
: —bx, ifx<0

dl R -1
—{x }: nx
Using mathematical induction prove that dlx for all positive integers n.
Answer
d i _n—| "o .
To prove: P(n): T(r ): nx"" for all positive integers n
dx
Forn=1,
d

~P(n) is trueforn =1

Let P(k) is true for some positive integer k.

I’|'[:Fc}:i
That is, dx

It has to be proved that P(k + 1) is also true.

{_r* } =kt

Consider ;;(.r“' ): :r (x - x""]
X = {x] +x- o {x ] [B}- applying product ru]e]
k-1

=x"1+x-k-x
=x" + kx*
=(k+1)-x"

= (k+1)- x4
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Thus, P(k + 1) is true whenever P (k) is true.
Therefore, by the principle of mathematical induction, the statement P(n) is true for

every positive integer n.

Hence, proved.

Question 20:
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain
the sum formula for cosines.

Answer
sin( A+ B)=sin Acos B +cos Asin B

Differentiating both sides with respect to x, we obtain

%[sin (A+ B]] = %{sin Acos B)+ %{cns Asin B)
= CDS[A+B}-E{A+ B)=cos B-i{sin A)+sin A-i{cos B)
d fins dx

+sin 8.2 (cos A)+cos A --i(sin B)
de dx

= c::-s[.e1+B}-di{;1+B) = c0s B cos A§+sin A(—sin a’.’:—*)E
X [ X

+sin B(—sin A)- 1£ﬂ+t:+::r3./h.1¢::ut=.ﬂd—'ﬂ

dx dx

= cos( A4 B][j; |%} =(cos A cos B—sin Asin H]{ﬂ+%]
o cos( A+ B) = cos Acos B -sin Asin B
£(x) g(x) h(x) ) e
v=| [ i " Y (] i
i
If “ b ¢ , prove that “ b ¢
Answer
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y=| | i H
& b fa
= y=(mc—nb) f(x)-(lc-na)g [ )+ (1b—ma)h(x)

d

Then,dr:dx[[mc—nb}f{x]]— [{fc—na ]+ [H} ma)h(x)]
=(mc—nb) f'(x)~(lc—na)g'(x)+(Ib—ma)h’ {x

J'(x) g'x) #(x)

= | I} 7
a h c
£(x) e'(x) w()
dy
—=| | m "
dx

d h ¢
Thus,

Question 23:

dy _dv
aeos” x I - X" ] '} _———— a"_}l = {}
If¥=° ’_lixil,show that dlx’ dx

Answer

(SREEL

It is given that,” = ¢
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Taking logarithm on both the sides, we obtain
log y=acos 'xloge
log y=acos ™' x

Differentiating both sides with respect to x, we obtain

tdy 1

¥ dx [

:;»Q— s
ddx 1-x"

(1) 2] - ey

Again differentiating both sides with respect to x. we obtain

(] f-reep g (4T 40

2 2. ,
ﬂ[ﬁj {—2 +(1—x2) Eaj.d—“?:uz.l_v.ﬁ
v de” dy
dv | dy d’y _ fy
:>[— {—2x}+(1—x )x?a,drz =a'.2) >
z h
:»—x£+[l xl)i_'i =a'y [%?’*U}
AT SN I
::»(I x ]dx: ldr a'y=10

Hence, proved.
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