Class 9 Important Formulas

Chapter 12 - Heron's Formula

S.no	Term	Description
1	Mensuration	It is branch of mathematics which is concerned about the measurement of length ,area and Volume of plane and Solid figure
2	Perimeter	a)The perimeter of plane figure is defined as the length of the boundary b)It units is same as that of length i.e. m ,cm,km
3	Area	a)The area of the plane figure is the surface enclosed by its boundary b) It unit is square of length unit. i.e. m², km²

Unit Conversion

1 Meter	10 Decimeter	100 centimeter	
1 Decimeter	10 centimeter	100 millimeter	
1 Km	10 Hectometer	100 Decameter	
1 Decameter	10 meter	1000 centimeter	
	'		
1 square Meter	100 square Decimeter	10000 square centimeter	

1 square Decimeter	100 square centimeter	10000 square millimeter
1 Hectare	100 square Decameter	10000 square meter
1 square myraimeter	100 square kilometer	10 ⁸ square meter

Perimeter and Area of Different Figure

N	Shape	Perimeter/heig	ht	Area
1	Right angle triangle Base =b, Height =h Hypotenuse=d	P=b+h+d Height =h		$A = \frac{1}{2}bh$
2	Isosceles right angled triangle Equal side =a	$p = 2a + a\sqrt{2}$ Height=a		$A = \frac{1}{2}a^2$
3	Any triangle of sides a,b ,c	P=a+b+c		$A = 2\sqrt{s(s-a)(s-b)(s-c)}$ Where $s = \frac{a+b+c}{2}$ This is called Heron's formula (sometimes called Hero's formula) is named after Hero of Alexandria
4	Square Side =a		P=4a	A=a ²

5	Rectangle of Length and breadth L and B respectively	P=2L +2B	A=LX B
6	Parallelograms	P=2a+2b	A= BaseX height
	Two sides are given as a and b		When the diagonal is also given ,say d
			Then $A = 2\sqrt{s(s-a)(s-b)(s-d)}$
			Where $s = \frac{a+b+d}{2}$
7	Rhombus	$p = 2\sqrt{d_1^2 + d_2^2}$	$A = \frac{1}{2}d_1d_2$
	Diagonal d_1 and d_2		2
	are given	1 ——	
		$s = \frac{1}{2}\sqrt{d_1^2 + d_2^2}$	
8	Quadrilateral	a) P=a+b+c+d	a)
	a) All the sides are		$A = \sqrt{(s-a)(s-b)(s-c)(s-d)}$
	given a,b,c ,d		where $s = \frac{a+b+c+d}{2}$
	b) Both the		b)
	diagonal are perpendicular to each other		$A = \frac{1}{2}d_1d_2$
			where d_1 and d_2 are the diagonal
	c) When a		C) $A = \frac{1}{2}d(h_1 + h_2)$
	c) When a diagonal and		where d is diagonal and h_1 and h_2 are perpendicular to that
	perpendicular to diagonal are given		are perpendicular to that
	diagonal are given		