CBSE Class 12 Maths Notes Chapter 5 Continuity and Differentiability

Continuity at a Point: A function $f(x)$ is said to be continuous at a point $x=a$, if
Left hand limit of $f(x)$ at $(x=a)=$ Right hand limit of $f(x)$ at $(x=a)=$ Value of $f(x)$ at $(x=a)$
i.e. if at $x=a, L H L=R H L=f(a)$
where, $\mathrm{LHL}=\lim _{x \rightarrow a^{-}} f(x)$ and $\mathrm{RHL}=\lim _{x \rightarrow a^{+}} f(x)$
Note: To evaluate LHL of a function $f(x)$ at $(x=0)$, put $x=a-h$ and to find RHL, put $x=a+h$.

Continuity in an Interval: A function $y=f(x)$ is said to be continuous in an interval (a, b), where $a<b$ if and only if $f(x)$ is continuous at every point in that interval.

- Every identity function is continuous.
- Every constant function is continuous.
- Every polynomial function is continuous.
- Every rational function is continuous.
- All trigonometric functions are continuous in their domain.

Standard Results of Limits

(i) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(iii) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
(iv) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(v) $\lim _{x \rightarrow \infty} \frac{1}{x^{p}}=0, p \in(0, \infty)$
(vi) $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
(vii) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
(viii) $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1$
(x) $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$
(xi) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
(xii) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$
(xiii) $\lim _{x \rightarrow \infty} \sin x=\lim _{x \rightarrow \infty} \cos x=$ lies between -1 to 1 .

Algebra of Continuous Functions

Suppose f and g are two real functions, continuous at real number c. Then,

- $f+g$ is continuous at $x=c$.
- $f-g$ is continuous at $x=c$.
- $\mathrm{f} . \mathrm{g}$ is continuous at $\mathrm{x}=\mathrm{c}$.
- cf is continuous, where c is any constant.
- $\left(\frac{f}{g}\right)$ is continuous at $\mathrm{x}=\mathrm{c}$, [provide $\mathrm{g}(\mathrm{c}) \neq 0$]

Suppose f and g are two real valued functions such that (fog) is defined at c . If g is continuous at c and f is continuous at $\mathrm{g}(\mathrm{c})$, then (fog) is continuous at c .

If f is continuous, then $|f|$ is also continuous.

Differentiability: A function $f(x)$ is said to be differentiable at a point $x=a$, if
Left hand derivative at $(x=a)=$ Right hand derivative at $(x=a)$
i.e. LHD at $(x=a)=\operatorname{RHD}(a t x=a)$, where Right hand derivative, where

Right hand derivative, $R f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Left hand derivative, $L f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$

Note: Every differentiable function is continuous but every continuous function is not differentiable.
Differentiation: The process of finding a derivative of a function is called differentiation.

Rules of Differentiation

Sum and Difference Rule: Let $y=f(x) \pm g(x)$. Then, by using sum and difference rule, it's derivative is written as

$$
\frac{d y}{d x}=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)
$$

Product Rule: Let $y=f(x) g(x)$. Then, by using product rule, it's derivative is written as

$$
\frac{d y}{d x}=\left[\frac{d}{d x}(f(x))\right] g(x)+\left[\frac{d}{d x}(g(x))\right] f(x)
$$

Quotient Rule: Let $\mathrm{y}=\frac{f(x)}{g(x)} ; \mathrm{g}(\mathrm{x}) \neq 0$, then by using quotient rule, it's derivative is written as

$$
\frac{d y}{d x}=\frac{g(x) \times \frac{d}{d x}[f(x)]-f(x) \times \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

Chain Rule: Let $y=f(u)$ and $u=f(x)$, then by using chain rule, we may write

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \text {, when } \frac{d y}{d u} \text { and } \frac{d u}{d x} \text { both exist. }
$$

Logarithmic Differentiation: Let $y=[f(x)]^{g(x)}$..(i)
So by taking $\log ($ to base e) we can write Eq. (i) as $\log y=g(x) \log f(x)$. Then, by using chain rule

$$
\frac{d y}{d x}=[f(x)]^{g(x)}\left[\frac{g(x)}{f(x)} f^{\prime}(x)+g^{\prime}(x) \log f(x)\right]
$$

Differentiation of Functions in Parametric Form: A relation expressed between two variables x and y in the form $x=f(t), y=g(t)$ is said to be parametric form with t as a parameter, when

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}
$$

(whenever $\frac{d x}{d t} \neq 0$)
Note: $d y / d x$ is expressed in terms of parameter only without directly involving the main variables x and y.

Second order Derivative: It is the derivative of the first order derivative.

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

Some Standard Derivatives

(i) $\frac{d}{d x}(\sin x)=\cos x$
(ii) $\frac{d}{d x}(\cos x)=-\sin x$
(iii) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(iv) $\frac{d}{d x}(\sec x)=\sec x \tan x$
(v) $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
(vi) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
(vii) $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
(viii) $\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
(ix) $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
(x) $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$
(xi) $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{x \sqrt{x^{2}-1}}$
(xii) $\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}$
(xiii) $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
(xiv) $\frac{d}{d x}($ constant $)=0$
(xv) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$(\mathrm{xvi}) \frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}, x>0$
(xvii) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log _{e} a, a>0$

Rolle's Theorem: Let $f:[a, b] \rightarrow R$ be continuous on $[a, b]$ and differentiable on (a, b) such that $f(a)=f(b)$, where a and b are some real numbers. Then, there exists at least one number c in (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem: Let $f:[a, b] \rightarrow R$ be continuous function on $[a, b]$ and differentiable on (a, b). Then, there exists at least one number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Note: Mean value theorem is an expansion of Rolle's theorem.
Some Useful Substitutions for Finding Derivatives Expression

Expression

(i) $a^{2}+x^{2}$
(ii) $a^{2}-x^{2}$
(iii) $x^{2}-a^{2}$
(iv) $\sqrt{\frac{a-x}{a+x}}$ or $\sqrt{\frac{a+x}{a-x}}$
(v) $\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$ or $\sqrt{\frac{a^{2}+x^{2}}{a^{2}-x^{2}}}$

Substitution

$$
\begin{aligned}
& x=a \tan \theta \text { or } x=a \cot \theta \\
& x=a \sin \theta \text { or } x=a \cos \theta \\
& x=a \sec \theta \text { or } x=a \operatorname{cosec} \theta
\end{aligned}
$$

$$
x=a \cos 2 \theta
$$

$$
x^{2}=a^{2} \cos 2 \theta
$$

