CBSE Class 12 Maths Notes Chapter 9 Differential Equations

Differential Equation: An equation involving independent variable, dependent variable, derivatives of dependent variable with respect to independent variable and constant is called a differential equation.

Ordinary Differential Equation: An equation involving derivatives of the dependent variable with respect to only one independent variable is called an ordinary differential equation.
e.g.

$$
\frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}-2=0 .
$$

From any given relationship between the dependent and independent variables, a differential equation can be formed by differentiating it with respect to the independent variable and eliminating arbitrary constants involved.

Order of a Differential Equation: Order of a differential equation is defined as the order of the highest order derivative of the dependent variable with respect to the independent variable involved in the given differential equation.

Note: Order of the differential equation, cannot be more than the number of arbitrary constants in the equation.

Degree of a Differential Equation: The highest exponent of the highest order derivative is called the degree of a differential equation provided exponent of each derivative and the unknown variable appearing in the differential equation is a non-negative integer.

Note
(i) Order and degree (if defined) of a differential equation are always positive integers.
(ii) The differential equation is a polynomial equation in derivatives.
(iii) If the given differential equation is not a polynomial equation in its derivatives, then its degree is not defined.

Formation of a Differential Equation: To form a differential equation from a given relation, we use the following steps:
Step I: Write the given equation and see the number of arbitrary constants it has.
Step II: Differentiate the given equation with respect to the dependent variable n times, where n is the number of arbitrary constants in the given equation.
Step III: Eliminate all arbitrary constants from the equations formed after differentiating in step (II) and the given equation.
Step IV: The equation obtained without the arbitrary constants is the required differential equation.

Solution of the Differential Equation

A function of the form $y=\Phi(x)+C$, which satisfies given differential equation, is called the solution of the differential equation.

General solution: The solution which contains as many arbitrary constants as the order of the differential equation, is called the general solution of the differential equation, i.e. if the solution of a differential equation of order n contains n arbitrary constants, then it is the general solution.

Particular solution: A solution obtained by giving particular values to arbitrary constants in the general solution of a differential equation, is called the particular solution.

Methods of Solving First Order and First Degree Differential Equation

Variable separable form: Suppose a differential equation is $\frac{d y}{d x}=F(x, y)$. Here, we separate the variables and then integrate both sides to get the general solution, i.e. above equation may be written as $\frac{d y}{d x}=h(x) . k(y)$ Then, by separating the variables, we get $\frac{d y}{k(y)}=\mathrm{h}(\mathrm{x}) \mathrm{dx}$.
Now, integrate above equation and get the general solution as $\mathrm{K}(\mathrm{y})=\mathrm{H}(\mathrm{x})+\mathrm{C}$
Here, $K(y)$ and $H(x)$ are the anti-derivatives of $\frac{1}{K(y)}$ and $h(x)$, respectively and C is the arbitrary constant.

Homogeneous differential equation: A differential equation $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ is said to be homogeneous, if $\mathrm{f}(\mathrm{x}$, $y)$ and $g(x, y)$ are homogeneous functions of same degree, i.e. it may be written as

$$
\frac{d y}{d x}=\frac{x^{n} f\left(\frac{y}{x}\right)}{x^{n} g\left(\frac{y}{x}\right)}=\frac{f(y / x)}{g(y / x)}=F(y / x)
$$

To check that given differential equation is homogeneous or not, we write differential equation as $\frac{d y}{d x}=\mathrm{F}(\mathrm{x}$, $\mathrm{y})$ or $\frac{d x}{d y}=\mathrm{F}(\mathrm{x}, \mathrm{y})$ and replace x by $\lambda \mathrm{x}, \mathrm{y}$ by $\lambda \mathrm{y}$ to write $\mathrm{F}(\mathrm{x}, \mathrm{y})=\lambda \mathrm{F}(\mathrm{x}, \mathrm{y})$.
Here, if power of λ is zero, then differential equation is homogeneous, otherwise not.

Solution of homogeneous differential equation: To solve homogeneous differential equation, we put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
in Eq. (i) to reduce it into variable separable form. Then, solve it and lastly put $\mathrm{v}=\frac{y}{x}$ to get required solution.

Note: If the homogeneous differential equation is in the form of $\frac{d y}{d x}=F(x, y)$, where $F(x, y)$ is homogeneous function of degree zero, then we make substitution $\frac{x}{y}=\mathrm{v}$, i.e. $\mathrm{x}=\mathrm{vy}$ and we proceed further to find the general solution as mentioned above.

Linear differential equation: General form of linear differential equation is $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$
where, P and Q are functions of x or constants.
or $\frac{d x}{d y}+\mathrm{P}^{\prime} \mathrm{x}=\mathrm{Q}^{\prime} . .$. (ii)
where, P^{\prime} and Q^{\prime} are functions of y or constants.
Then, solution of Eq. (i) is given by the equation
$y \times I F=\int(Q \times I F) d x+C$
where, $\mathrm{IF}=$ Integrating factor and $\mathrm{IF}=\mathrm{e}^{\int \mathrm{Pdx}}$
Also, solution of Eq. (ii) is given by the equation
$x \times I F=\int\left(Q^{\prime} \times I F\right) d y+C$
where, $I F=$ Integrating factor and $I F=e^{\int P \prime d y}$

