CBSE Class 12 Maths Notes Chapter 3 Matrices

Matrix: A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements or the entries of the matrix.

Order of a Matrix: If a matrix has m rows and n columns, then its order is written as $m \times n$. If a matrix has order $m \times n$, then it has $m n$ elements.

In general, $a_{m \times n}$ matrix has the following rectangular array:

$$
\left[\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]_{m \times n} \text { or } A=\left[a_{i j}\right]_{m \times n}, 1 \leq i \leq m, i \leq j \leq n ; i, j \in N
$$

Note: We shall consider only those matrices, whose elements are real numbers or functions taking real values.

Types of Matrices

Column Matrix: A matrix which has only one column, is called a column matrix.
e.g. $\left[\begin{array}{c}1 \\ 0 \\ -5\end{array}\right]$

In general, $A=\left[a_{i j}\right]_{m \times 1}$ is a column matrix of order $m \times 1$.
Row Matrix: A matrix which has only one row, is called a row matrix,
e.g. $\left[\begin{array}{lll}1 & 5 & 9\end{array}\right]$

In general, $A=\left[a_{i j}\right]_{1 \times n}$ is a row matrix of order $1 \times n$

Square Matrix: A matrix which has equal number of rows and columns, is called a square matrix
e.g. $\left[\begin{array}{cc}3 & -1 \\ 5 & 2\end{array}\right]$

In general, $A=\left[a_{i j}\right] m \times m$ is a square matrix of order m.
Note: If $A=\left[a_{i j}\right]$ is a square matrix of order n, then elements $a_{11}, a_{22}, a_{33}, \ldots, a_{n n}$ is said to constitute the diagonal of the matrix A.

Diagonal Matrix: A square matrix whose all the elements except the diagonal elements are zeroes, is called a diagonal matrix,
e.g. $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -8\end{array}\right]$

In general, $A=\left[a_{i j}\right]_{m \times m}$ is a diagonal matrix, if $a_{i j}=0$, when $i \neq j$.

Scalar Matrix: A diagonal matrix whose all diagonal elements are same (non-zero), is called a scalar matrix,
e.g. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

In general, $A=\left[a_{i j}\right]_{n \times n}$ is a scalar matrix, if $a_{i j}=0$, when $\mathrm{i} \neq \mathrm{j}, \mathrm{a}_{\mathrm{ij}}=\mathrm{k}$ (constant), when $\mathrm{i}=\mathrm{j}$.
Note: A scalar matrix is a diagonal matrix but a diagonal matrix may or may not be a scalar matrix.
Unit or Identity Matrix: A diagonal matrix in which all diagonal elements are ' 1 ' and all non-diagonal elements are zero, is called an identity matrix. It is denoted by I.
e.g. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

In general, $A=\left[a_{i j}\right]_{n \times n}$ is an identity matrix, if $a_{i j}=1$, when $\mathrm{i}=\mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$.

Zero or Null Matrix: A matrix is said to be a zero or null matrix, if its all elements are zer0
e.g. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Equality of Matrices: Two matrices A and B are said to be equal, if
(i) order of A and B are same.
(ii) corresponding elements of A and B are same i.e. $a_{i j}=b_{i j}, \forall i$ and j.
e.g. $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ and $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ are equal matrices, but $\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$ are not equal matrices.

Operations on Matrices

Between two or more than two matrices, the following operations are defined below:
Addition and Subtraction of Matrices: Addition and subtraction of two matrices are defined in an order of both the matrices are same.

Addition of Matrix
If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[y_{i j}\right]_{m \times n}$, then $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}, 1 \leq i \leq m, 1 \leq j \leq n$
Subtraction of Matrix
If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$, then $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}, 1 \leq i \leq m, 1 \leq j \leq n$

Properties of Addition of Matrices

(a) Commutative If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of the same order say $m \times n$ then $A+B=B+A$,
(b) Associative for any three matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right], C=\left[c_{i j}\right]$ of the same order say $m \times n, A+(B+C)=(A+$
B) $+C$.
(c) Existence of additive identity Let $A=[a i j]$ be amxn matrix and O be amxn zero matrix, then $A+O=O+A$ = A. In other words, O is the additive identity for matrix addition.
(d) Existence of additive inverse Let $A=\left[a_{i j}\right]_{m \times n}$ be any matrix, then we have another matrix as $-A=\left[-a_{i j}\right]_{m \times n}$ such that $A+(-A)=(-A+A)=0$. So, matrix $(-A)$ is called additive inverse of A or negative of A.

Note
(i) If A and B are not of the same order, then $A+B$ is not defined.
(ii) Addition of matrices is an example of a binary operation on the set of matrices of the same order.

Multiplication of a matrix by scalar number: Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix and k is scalar, then $k A$ is another matrix obtained by multiplying each element of A by the scalar k, i.e. if $A=\left[a_{i j}\right]_{m \times n}$, then $k A=\left[k a_{i j}\right]_{m \times n}$.
e.g. $\quad k\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}k a_{11} & k a_{12} \\ k a_{21} & k a_{22}\end{array}\right]_{2 \times 2}$

Properties of Scalar Multiplication of a Matrix
Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two matrices of the same order say $m \times n$, then
(a) $k(A+B)=k A+k B$, where k is a scalar.
(b) $(k+I) A=k A+I A$, where k and I are scalars.

Multiplication of Matrices: Let A and B be two matrices. Then, their product $A B$ is defined, if the number of columns in matrix A is equal to the number of rows in matrix B.

Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{j k}\right]_{n \times p}$, then product $A B=C=\left[c_{i k}\right]_{m \times p}$, where $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$. In other words, if $A=[a i j]_{m \times n}, B=\left[b_{j k}\right]_{n \times n}$, then the ith row of A is $\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]$ and the k th column of B is $\left[\begin{array}{c}b_{1 k} \\ b_{2 k} \\ \vdots \\ b_{n k}\end{array}\right]$, then $C_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}=\sum_{j=1}^{n} a_{i j} b_{j k}$.

Properties of Multiplication of Matrices
(a) Non-commutativity Matrix multiplication is not commutative i.e. if AB and BA are both defined, then it is not necessary that $A B \neq B A$.
(b) Associative law For three matrices A, B, and C, if multiplication is defined, then $A(B C)=(A B) C$.
(c) Multiplicative identity For every square matrix A, there exists an identity matrix of the same order such that $\mathrm{IA}=\mathrm{Al}=\mathrm{A}$.
Note: For Amxm, there is only one multiplicative identity I_{m}.
(d) Distributive law For three matrices A, B, and C,
$A(B+C)=A B+A C$
$(A+B) C=A C+B C$
whenever both sides of the equality are defined.

Note: If A and B are two non-zero matrices, then their product may be a zero matrix.
e.g. Suppose $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right]$, then $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

