Notes of Ch 4 Carbon and its Compounds Class 10th Science

Introduction

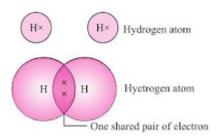
(i) Organic Compounds (ii) Inorganic Compounds

ightarrow Organic Compounds are made up of Carbons and form the basis of all living organisms.

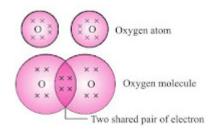
The Covalent Bond

 \rightarrow Carbon always forms covalent bond.

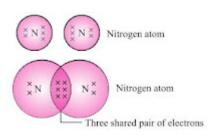
ightarrow The bond formed by sharing of electron pair between two atoms are known as covalent ato

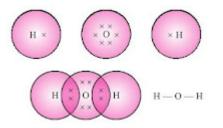

• Noble gas configuration of Carbon

 \rightarrow Carbon is tetravalent, it does not form ionic bond by either losing four electrons (C⁴⁺) or by gaining four electrons (C⁴⁻). It is difficult to hold four extra electron and would require large amount of energy to remove four electrons. So, carbon can form bond by sharing of its electro with


the electrons of other carbon atom or with other element and attain noble gas configuration.

 \rightarrow The atoms of other elements like hydrogen, oxygen and nitrogen, chlorine also form bonds sharing of electrons.


• H – H single bond between hydrogen atoms (H₂)


• O = O double bond between oxygen atoms (O₂)

• $N \equiv N$ triple bond between nitrogen atoms

• Water molecule has single covalent bond between one oxygen and two hydrogen atoms.

Physical Properties of Covalent Compounds

 \rightarrow Covalent compounds have low melting and boiling points as they have weak intermolecular force.

 \rightarrow They are generally poor conductor of electricity as electrons are shared between atoms and charged particles are formed.

Versatile Nature of Carbon

The two characteristic properties of carbon element which lead to the formation of large num of compounds :

• **Catenation:** Carbon can link with carbon atoms by means of covalent bonds to form long chai branched chains and closed ring. Compound Carbon atoms may be linked by single, double or triple bonds.

• **Tetravalency:** Carbon has 4 valence electrons. Carbon can bond with four carbon atoms, monovalent atoms, oxygen, nitrogen and sulphur.

Hydrocarbon

 \rightarrow Compounds made up of hydrogen and carbon are called hydrocarbon.

- \rightarrow There are two types of Hydrocarbons.
- (i) Saturated Hydrocarbons
- (ii) Unsaturated Hydrocarbons

• Saturated Hydrocarbons

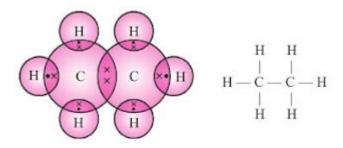
 \rightarrow Single bond between carbon atoms.

 $\rightarrow -C-C-$

 \rightarrow **Alkanes** are saturated hydrocarbons. <u>General Formula</u>: C_nH_{2n+2}

- Unsaturated Hydrocarbons
- \rightarrow Double or triple bond between carbon atoms.
- \rightarrow Alkenes and Alkynes are unsaturated hydrocarbons.

```
→ Alkenes: —C = C—


<u>General formula</u>: C_nH_{2n}

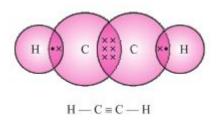
→ Alkynes: —C≡C—

<u>General Formula</u>: C_nH_{2n-2}
```

Electron Dot Structure of Saturated Hydrocarbons

• Ethane C₂H₆

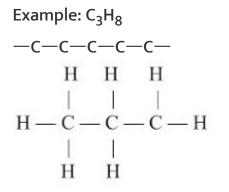



Names, molecular formulae and structure formulae of saturated hydrocarbons (Alkanes):

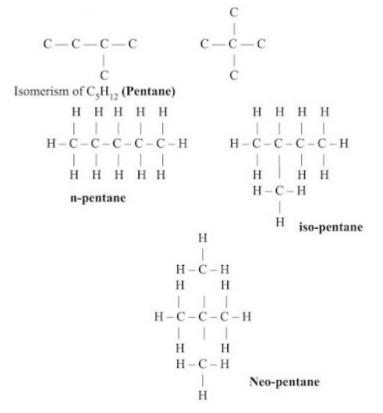
No. of C atoms	Name	Formula	Structure
1	Methane	CH4	н н-с-н і
2	Ethane	C_2H_6	$\begin{array}{c} H & H \\ H - C - C - H \\ H - H & H \\ H & H \end{array}$
3	Propane	C_3H_8	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$
4	Butane	$C_4 H_{10}$	$\begin{array}{cccccccc} H & H & H & H \\ I & I & I & I \\ H - C - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$
5	Pentane	C_5H_{12}	$\begin{array}{ccccccccc} H & H & H & H & H \\ I & I & I & I & I \\ H - C - C - C - C - C - C - H \\ I & I & I & I \\ H & H & H & H \end{array}$
6	Hexane	C ₆ H ₁₄	$\begin{array}{ccccccc} H & H & H & H & H & H \\ - & - & - & - & - & - & - & - \\ H - & - & - & - & - & - & - & - & - \\ - & - &$

Electron Dot Structure of Unsaturated Hydrocarbons

• Ethene (C₂H₄)

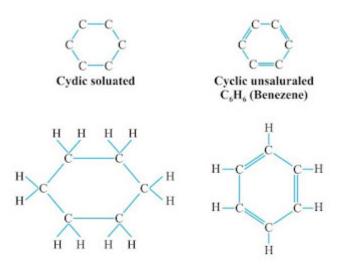


Names, molecular formulae and structure formulae of unsaturated hydrocarbons (Alkenes and Alkynes):


Name of Hydrocarbon	Mileculas formula	Structural Formula	
Alkenes :			
1. Ethene	C_2H_4	$ \begin{array}{ccc} H & H \\ & \\ H & - C = C & - H \\ & \\ H & H \end{array} $	
2. Propene	C_3H_6	$ H H H \\ \\ H - C = C - C - H \\ \\ H H H $	
3. Butane	C_4H_8	$H H H \\ \\ H - C = C - C - C - H \\ \\ H H H H$	
Alkynes :			
1. Ethyne	C_2H_2	$H - C \equiv C - H$ H	
2. Propyne	C_3H_4	$\mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{C} - \mathbf{H}$	
		H H H 	
3. Butyne	C_4H_6	$H - C \equiv C - C - C - H$ $ H$ H	

Carbon Compounds on the Basis of Structure

(i) Straight (unbranched) chain


(ii) Branched

 \rightarrow These three above compounds has same molecular formula but different structures are callestructural isomers and phenomenon is structural isomerism.

(iii) Cyclic

Example: C₆H₁₂

Functional Groups

 \rightarrow In hydrocarbon chain, one or more hydrogen atom is replaced by other atoms in accordance with their valancies. These are heteroatom.

 \rightarrow These heteroatom or group of atoms which make carbon compound reactive and decides it properties are called functional groups.

Hetero atom	Functional group	Formula of functional group
Cl/Br	Halo- (Chloro/bromo)	—Cl, —Br (substitutes for hydrogen atom)
Oxygen	1. Alcohol	—ОН
	2. Aldehyde	-c _ O
	3. Ketone	-C - I O
	4. Carboxylic acid	O ∥ −C−OH

Homologous Series

 \rightarrow It is series of compounds in which the some functional group substitutes for the hydrogen i carbon chain.

Example: Alcohols – CH₃OH, C₂H₅OH, C₃H₇OH, C₄H₉OH

- They have same general formula.
- Any two homologues differ by CH_2 group and difference in molecular mass is 14 μ .
- They have same chemical properties but show gradual change in physical properties.

Nomenclature of Carbon Compounds

- (i) Identify the number of carbon atoms in compounds.
- (ii) Functional group is indicated by suffix or prefix.

Functional group	Prefix/Suffix	Example	
1. Halogen	Prefix-chloro, bromo, etc.	$\begin{array}{c} H & H & H \\ I & I & I \\ H - C - C - C - C - C \\ I & I \\ H & H \end{array}$	Chloropropane
		$\begin{array}{c} H & H & H \\ I & I & I \\ H - C - C - C - C - Br \\ I & I \\ H & H \end{array}$	Bromopropane
2. Alcohol	Suffix - ol	$\begin{array}{c} H & H & H \\ H - C - C - C - C - OH \\ H & H & H \end{array}$	Propanol
3. Aldehyde	Suffix - al	$\begin{array}{c} H & H & H \\ H - C - C - C - C = O \\ H & H \end{array}$	Propanal
4. Ketone	Suffix - one	$\begin{array}{c} H & H \\ H - \overset{I}{C} - C - \overset{I}{C} - H \\ H & \overset{I}{O} & H \end{array}$	Propanone
5. Carboxylic acid	Suffix - oic acid	$\begin{array}{c} H & H & O \\ I & I & I \\ H - C - C - C - C - OH \\ I & I \\ H & H \end{array}$	Propanoic acid
6. Double bond (alkenes)	Suffix - ene	$\begin{array}{c} H & H \\ H - C - C = C \\ H \\ H \end{array} = C H$	Propene
7. Triple bond (alkynes)	Suffix - yne	$\begin{array}{c} H\\ H-C\\ -C\\ H\\ H\end{array} \equiv C-H$	Propyne

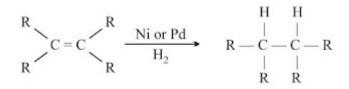
Chemical Properties of Carbon Compounds

(i) Combustion

 $CH_4 + 2O_2 \xrightarrow{Combustion} CO_2 + 2H_2O + Heat + Light$

• Carbon and its compounds are used as fuels because they burn in air releasing lot of heat energy.

• Saturated hydrocarbon generally burn in air with blue and non-sooty flame.


• Unsaturated hydrocarbon burns in air with yellow sooty flame because percentage of carbon higher than saturated hydrocarbon which does not get completely oxidized in air.

(ii) Oxidation

Alcohols can be converted to carboxylic acid in presence of oxidizing agent alkaline KMnO₄ (potassium permangnate) or acidic potassium dichromate.

 $\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \xrightarrow{\mathrm{Alkaline}\,\mathrm{KMnO}_{4}\,\mathrm{Or}} \\ \mathrm{Ethanol} \xrightarrow{\mathrm{Alkaline}\,\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7}} \mathrm{CH}_{3}\mathrm{COOH} \\ \mathrm{Ethanoic} \text{ acid} \end{array}$

(iii) Addition Reaction

Unsaturated hydrocarbon add hydrogen in the presence of catalyst palladium or nickel. Vegeta oils are converted into vegetable ghee using this process.

It is also called hydrogenation of vegetable oils.

(iv) Substitution Reaction

$$CH_4 + Cl_2 \xrightarrow{Sunlight} CH_3Cl + HCl$$

Important Carbon Compounds: Ethanol and Ethanoic acid

Physical Properties of Ethanol

- Colourless, pleasant smell and burning taste.
- Soluble in water.
- Volatile liquid with low boiling point of 351 K.
- Neutral compound.

Chemical Properties of Ethanol

(i) Reaction with Sodium

```
2Na + CH_3CH_2OH \rightarrow 2CH_3CH_2ONa^+ + H_2
(Sodium ethoxide)
```

This reaction is used as a test for ethanol by evolution of H_2 gas (Burn with pop sound).

(ii) Dehydration

 $\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \xrightarrow{\mathrm{Hot\,conc.}} \mathrm{CH}_{2} = \mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$

Physical Properties of Ethanoic acid

- Colourless liquid having sour taste and have smell of vinegar.
- Boiling point is 391 K.
- When pure CH₃COOH is freezed, it forms colourless ice like solid. So it is called glacial acetic a

Chemical Properties

(i) Esterification

 $\begin{array}{c} \mathrm{CH_3COOH} + \mathrm{CH_3CH_2OH} & \xrightarrow{\mathrm{Acid}} & \mathrm{CH_3 \ CO} \ \mathrm{CH_2 \ CH_3} \\ (\mathrm{Ethanoic \ acid}) \ (\mathrm{Ethanol}) & & \parallel \\ & & \mathrm{O} \\ & & \mathrm{Ester} \end{array}$

Sweet smelling ester is formed.

 $\begin{array}{c} \mathrm{CH}_3 \operatorname{CO} \ \mathrm{CH}_2 \operatorname{CH}_3 + \mathrm{NaOH} \rightarrow \mathrm{CH}_3 \mathrm{COONa} + \mathrm{CH}_3 \mathrm{CH}_2 \mathrm{OH} \\ \| \\ \mathrm{O} \end{array}$

This is saponification as soap is prepared by this.

(ii) Reaction with base

 $NaOH + CH_3COOH \rightarrow CH_3COONa + H_2O$

(iii) Reaction with carbonates and hydrogen carbonates : $2CH_3COOH + Na_2CO_3 \rightarrow 2CH_3COONa + H_2O + CO_2$ $CHH_2COOH + NaHCOH_2 \rightarrow CH_3COONa + H_2O + CO_2$

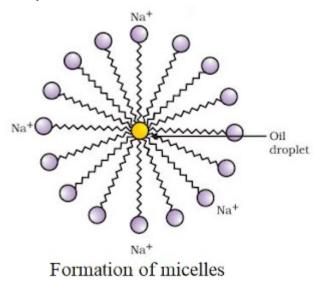
Soaps and Detergents

- Soap is sodium or potassium salt of long chain carboxylic acid. Example: C₁₇H₃₅COONa⁺
- Soaps are effective only in soft water.
- Detergents are ammonium or sulphonate salt of long chain of carboxylic acid.
- Detergents are effective in both hard and soft water.

Soap molecule has:

(i) Ionic (hydrophilic) part (ii) Long hydrocarbon chain (hydrophobic) part

Hydrophilic end Hydrophobic end


Structure of soap molecule

Cleansing Action of Soap

• Most dirt is oily in nature and hydrophobic end attaches itself with dirt and the ionic end is surrounded with molecule of water. This result in formation of a radial structure called micelle

• Soap micelles helps to dissolve dirt and grease in water and cloth gets cleaned.

• Soap is mixture of miscelles and

• The magnesium and calcium salt present in hard water react with soap molecule to form insoluble product called scum. This scum create difficulty in cleansing action.

• By use of detergent, insoluble scum is not formed with hard water and cloths get cleaned effectively.