CBSE Class 11 Maths Notes Chapter 2 Relations and Functions

Ordered Pair

An ordered pair consists of two objects or elements in a given fixed order.

Equality of Two Ordered Pairs

Two ordered pairs (a, b) and (c, d) are equal if $a=c$ and $b=d$.

Cartesian Product of Two Sets

For any two non-empty sets A and B, the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the cartesian product of sets A and B and is denoted by $A \times B$.
Thus, $A \times B=\{(a, b): a \in A$ and $b \in B\}$
If $A=\Phi$ or $B=\Phi$, then we define $A \times B=\Phi$

Note:

- $A \times B \neq B \times A$
- If $n(A)=m$ and $n(B)=n$, then $n(A \times B)=m n$ and $n(B \times A)=m n$
- If atieast one of A and B is infinite, then $(A \times B)$ is infinite and $(B \times A)$ is infinite.

Relations

A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product set $A \times B$. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $A \times B$.
The set of all first elements in a relation R is called the domain of the relation B, and the set of all second elements called images is called the range of R.

Note:

- A relation may be represented either by the Roster form or by the set of builder form, or by an arrow diagram which is a visual representation of relation.
- If $n(A)=m, n(B)=n$, then $n(A \times B)=m n$ and the total number of possible relations from set A to set B $=2^{\mathrm{mn}}$

Inverse of Relation

For any two non-empty sets A and B. Let R be a relation from a set A to a set B. Then, the inverse of relation R, denoted by R^{-1} is a relation from B to A and it is defined by
$R^{-1}=\{(b, a):(a, b) \in R\}$
Domain of $R=$ Range of R^{-1} and
Range of $R=$ Domain of R^{-1}.

Functions

A relation ffrom a set A to set B is said to be function, if every element of set A has one and only image in set B.
In other words, a function f is a relation such that no two pairs in the relation have the first element.

Real-Valued Function

A function $f: A \rightarrow B$ is called a real-valued function if B is a subset of R (set of all real numbers). If A and B both are subsets of R, then f is called a real function.

Some Specific Types of Functions

Identity function: The function $f: R \rightarrow R$ defined by $f(x)=x$ for each $x \in R$ is called identity function.
Domain of $f=R$; Range of $f=R$

Constant function: The function $f: R \rightarrow R$ defined by $f(x)=C, x \in R$, where C is a constant $\in R$, is called a constant function.
Domain of $f=R$; Range of $f=C$

Polynomial function: A real valued function $f: R \rightarrow R$ defined by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where $n \in N$ and $a_{0}, a_{1}, a_{2}, \ldots \ldots . . a_{n} \in R$ for each $x \in R$, is called polynomial function.

Rational function: These are the real function of type $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomial functions of x defined in a domain, where $\mathrm{g}(\mathrm{x}) \neq 0$.

The modulus function: The real function $f: R \rightarrow R$ defined by $f(x)=|x|$
or

$$
f(x)=\left\{\begin{array}{cc}
-x, & x<0 \\
x, & x \geq 0
\end{array}\right.
$$

for all values of $x \in R$ is called the modulus function.
Domaim of $f=R$
Range of $f=R^{+} U\{0\}$ i.e. $[0, \infty)$

Signum function: The real function $f: R \rightarrow R$ defined
by $\mathrm{f}(\mathrm{x})=\frac{|x|}{x}, \mathrm{x} \neq 0$ and 0 , if $\mathrm{x}=0$
or

$$
f(x)=\left\{\begin{array}{cc}
\frac{|x|}{x}, & x \neq 0 \\
0, & x=0
\end{array}=\left\{\begin{array}{cc}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{array}\right.\right.
$$

is called the signum function.
Domain of $f=R$; Range of $f=\{-1,0,1\}$

Greatest integer function: The real function $f: R \rightarrow R$ defined by $f(x)=\{x\}, x \in R$ assumes that the values of the greatest integer less than or equal to x, is called the greatest integer function.
Domain of $f=R$; Range of $f=$ Integer

Fractional part function: The real function $f: R \rightarrow R$ defined by $f(x)=\{x\}, x \in R$ is called the fractional part function.
$f(x)=\{x\}=x-[x]$ for all $x \in R$
Domain of $f=R$; Range of $f=[0,1)$

Algebra of Real Functions

Addition of two real functions: Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be any two real functions, where $X \in R$. Then, we define $(f+g): X \rightarrow R$ by
$\{f+g)(x)=f(x)+g(x)$, for all $x \in X$.

Subtraction of a real function from another: Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be any two real functions, where X $\subseteq R$. Then, we define $(f-g): X \rightarrow R$ by $(f-g)(x)=f(x)-g(x)$, for all $x \in X$.

Multiplication by a scalar: Let $f: X \rightarrow R$ be a real function and K be any scalar belonging to R. Then, the product of $K f$ is function from X to R defined by $(K f)(x)=K f(x)$ for all $x \in X$.

Multiplication of two real functions: Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be any two real functions, where $X \subseteq R$. Then, product of these two functions i.e. f.g : $X \rightarrow R$ is defined by $(f g) x=f(x) . g(x) \forall x \in X$.

Quotient of two real functions: Let f and g be two real functions defined from $X \rightarrow R$. The quotient of f by g denoted by $\frac{f}{g}$ is a function defined from $\mathrm{X} \rightarrow \mathrm{R}$ as
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, where $g(x) \neq 0, \forall x \in X$.

