CBSE Class 12 Maths Notes Chapter 11 Three Dimensional Geometry

Direction Cosines of a Line: If the directed line OP makes angles a, β, and γ with positive X-axis, Y-axis and Z-axis respectively, then $\cos a, \cos \beta$, and $\cos \gamma$, are called direction cosines of a line. They are denoted by I, m, and n. Therefore, $I=\cos a, m=\cos \beta$ and $n=\cos \gamma$. Also, sum of squares of direction cosines of a line is always 1 ,
i.e. $I^{2}+m^{2}+n^{2}=1$ or $\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma=1$

Note: Direction cosines of a directed line are unique.

Direction Ratios of a Line: Number proportional to the direction cosines of a line, are called direction ratios of a line.
(i) If a, b and c are direction ratios of a line, then $\frac{l}{a}=\frac{m}{b}=\frac{n}{c}$
(ii) If a, b and care direction ratios of a line, then its direction cosines are

$$
l= \pm \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m= \pm \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n= \pm \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

(iii) Direction ratios of a line $P Q$ passing through the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are $x_{2}-x_{1}, y_{2}-y_{1}$ and $z_{2}-z_{1}$ and direction cosines are

$$
\begin{aligned}
& \frac{x_{2}-x_{1}}{|\overrightarrow{P Q}|} \\
& \frac{y_{2}-y_{1}}{|\overrightarrow{P Q}|}, \frac{z_{2}-z_{1}}{|\overrightarrow{P Q}|} .
\end{aligned}
$$

Note:
(i) Direction ratios of two parallel lines are proportional.
(ii) Direction ratios of a line are not unique.

Straight line: A straight line is a curve, such that all the points on the line segment joining any two points of it lies on it.

Equation of a Line through a Given Point and parallel to a given vector \vec{b}
Vector form $\vec{r}=\vec{a}+\lambda \vec{b}$
where, $\vec{a}=$ Position vector of a point through which the line is passing
$\vec{b}=A$ vector parallel to a given line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

where, $\left(x_{1}, y_{1}, z_{1}\right)$ is the point through which the line is passing through and a, b, c are the direction ratios of the line.
If I, m, and n are the direction cosines of the line, then the equation of the line is

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}
$$

Remember point: Before we use the DR's of a line, first we have to ensure that coefficients of x, y and z are unity with a positive sign.

Equation of Line Passing through Two Given Points

Vector form: $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}), \lambda \in \mathrm{R}$, where a and b are the position vectors of the points through which the line is passing.

Cartesian form

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

where, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are the points through which the line is passing.

Angle between Two Lines

Vector form: Angle between the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given as

$$
\cos \theta=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot\left|\overrightarrow{b_{2}}\right|}\right|
$$

Cartesian form If θ is the angle between the lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$, then $\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
or $\quad \sin \theta=\frac{\sqrt{\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
Also, angle (θ) between two lines with direction cosines, l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$
or

$$
\sin \theta=\sqrt{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}
$$

Condition of Perpendicularity: Two lines are said to be perpendicular, when in vector form $\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0$; in cartesian form $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
or $\mathrm{I}_{1} \mathrm{I}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+n_{1} n_{2}=0$ [direction cosine form]

Condition that Two Lines are Parallel: Two lines are parallel, when in vector form $\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|$; in cartesian form $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
or
$\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$
[direction cosine form]

Shortest Distance between Two Lines: Two non-parallel and non-intersecting straight lines, are called skew lines.

For skew lines, the line of the shortest distance will be perpendicular to both the lines.
Vector form: If the lines are $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}}$. Then, shortest distance

$$
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|
$$

where $\overrightarrow{a_{2}}, \overrightarrow{a_{1}}$ are position vectors of point through which the line is passing and $\overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ are the vectors in the direction of a line.

Cartesian form: If the lines are

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} .
$$

Then, shortest distance,
$d=\left|\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}\right|$

Distance between two Parallel Lines: If two lines I_{1} and I_{2} are parallel, then they are coplanar. Let the lines be $\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}$, then the distance between parallel lines is
$\left|\frac{\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{|\vec{b}|}\right|$

Note: If two lines are parallel, then they both have same DR's.

Distance between Two Points: The distance between two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Mid-point of a Line: The mid-point of a line joining points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Plane: A plane is a surface such that a line segment joining any two points of it lies wholly on it. A straight line which is perpendicular to every line lying on a plane is called a normal to the plane.

Equations of a Plane in Normal form

Vector form: The equation of plane in normal form is given by $\vec{r} \cdot \vec{n}=d$, where \vec{n} is a vector which is normal to the plane.
Cartesian form: The equation of the plane is given $b y a x+b y+c z=d$, where a, b and c are the direction ratios of plane and d is the distance of the plane from origin.
Another equation of the plane is $l x+m y+n z=p$, where l, m, and n are direction cosines of the perpendicular from origin and p is a distance of a plane from origin.
Note: If d is the distance from the origin and I, m and n are the direction cosines of the normal to the plane through the origin, then the foot of the perpendicular is (ld, md, nd).

Equation of a Plane Perpendicular to a given Vector and Passing Through a given Point

Vector form: Let a plane passes through a point A with position vector \vec{a} and perpendicular to the vector \vec{n}, then $(\vec{r}-\vec{a}) \cdot \vec{n}=0$
This is the vector equation of the plane.
Cartesian form: Equation of plane passing through point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ where, a, b and c are the direction ratios of normal to the plane.

Equation of Plane Passing through Three Non-collinear Points

Vector form: If \vec{a}, \vec{b} and \vec{c} are the position vectors of three given points, then equation of a plane passing through three non-collinear points is $(\vec{r}-\vec{a}) \cdot\{(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})\}=0$.
Cartesian form: If $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ are three non-collinear points, then equation of the plane is

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

If above points are collinear, then

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|=0 .
$$

Equation of Plane in Intercept Form: If a, b and c are x-intercept, y-intercept and z-intercept, respectively made by the plane on the coordinate axes, then equation of plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$

Equation of Plane Passing through the Line of Intersection of two given Planes

Vector form: If equation of the planes are $\vec{r} \cdot \overrightarrow{n_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{n_{2}}=d_{2}$, then equation of any plane passing through the intersection of planes is
$\vec{r} \cdot\left(\overrightarrow{n_{1}}+\lambda \overrightarrow{n_{2}}\right)=d_{1}+\lambda d_{2}$
where, λ is a constant and calculated from given condition.
Cartesian form: If the equation of planes are $a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$, then equation of any plane passing through the intersection of planes is $a_{1} x+b_{1} y+c_{1} z-d_{1}+\lambda\left(a_{2} x+b_{2} y+c_{2} z-d_{2}\right)=0$ where, λ is a constant and calculated from given condition.

Coplanarity of Two Lines

Vector form: If two lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are coplanar, then
$\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{2}}-\overrightarrow{b_{1}}\right)=0$
Cartesian form If two lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are coplanar, then $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$.

Angle between Two Planes: Let θ be the angle between two planes.

Vector form: If $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ are normals to the planes and θ be the angle between the planes $\vec{r} \cdot \overrightarrow{n_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{n_{2}}=d_{2}$, then θ is the angle between the normals to the planes drawn from some common points.

$$
\cos \theta=\left|\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}\right| .
$$

Note: The planes are perpendicular to each other, if $\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=0$ and parallel, if $\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|$
Cartesian form: If the two planes are $a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$, then

$$
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

Note: Planes are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$ and planes are parallel, if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Distance of a Point from a Plane

Vector form: The distance of a point whose position vector is \vec{a} from the plane $\vec{r} \cdot \hat{n}=d \quad$ is $\quad|d-\vec{a} \hat{n}|$

Note:
(i) If the equation of the plane is in the form $\vec{r} \cdot \vec{n}=d$, where \vec{n} is normal to the plane, then the perpendicular distance is $\frac{|\vec{a} \cdot \vec{n}-d|}{|\vec{n}|}$
(ii) The length of the perpendicular from origin O to the plane $\vec{r} \cdot \vec{n}=d \quad$ is $\quad \frac{|d|}{|\vec{n}|}[\because \vec{a}=0]$

Cartesian form: The distance of the point $\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $A x+B y+C z=D$ is

$$
d=\left|\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|
$$

Angle between a Line and a Plane

Vector form: If the equation of line is $\vec{r}=\vec{a}+\lambda \vec{b}$ and the equation of plane is $\vec{r} \cdot \vec{n}=d$, then the angle θ between the line and the normal to the plane is
$\cos \theta=\left|\frac{\vec{b} \cdot \vec{n}}{\|\vec{b}| | \vec{n}\|}\right|$
and so the angle Φ between the line and the plane is given by $90^{\circ}-\theta$,
i.e. $\sin \left(90^{\circ}-\theta\right)=\cos \theta$

$$
\sin \phi=\left|\frac{\vec{b} \cdot \vec{n}}{\|\vec{b}\| \vec{n} \|}\right|
$$

Cartesian form: If a, b and c are the DR's of line and $l x+m y+n z+d=0$ be the equation of plane, then

$$
\sin \theta=\frac{a l+b m+c n}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}
$$

If a line is parallel to the plane, then $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ and if line is perpendicular to the plane, then

$$
\frac{a}{l}=\frac{b}{m}=\frac{c}{n}
$$

Remember Points

(i) If a line is parallel to the plane, then normal to the plane is perpendicular to the line. i.e. $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ $=0$
(ii) If a line is perpendicular to the plane, then DR's of line are proportional to the normal of the plane.
i.e. $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
where, a_{1}, b_{1} and c_{1} are the DR's of a line and a_{2}, b_{2} and c_{2} are the DR's of normal to the plane.

