CBSE Class 10 Maths Notes Chapter 5 Arithmetic Progressions

SEQUENCE:

A sequence is an arrangement of numbers in a definite order and according to some rule.

Example: 1, 3, 5,7,9, ... is a sequence where each successive item is 2 greater than the preceding term and 1, 4, 9, 16, 25, ... is a sequence where each term is the square of successive natural numbers.

TERMS :

The various numbers occurring in a sequence are called 'terms'. Since the order of a sequence is fixed, therefore the terms are known by the position they occupy in the sequence.

Example: If the sequence is defined as

1	3	5	7	9	 n		
Ţ	Ť	Ť			Ť		
First	Second	Third			n th		general
term (a ₁)	term (a ₂)	term (a ₃)			term (a _n)	or	term

ARITHMETIC PROGRESSION (A.P.):

An Arithmetic progression is a special case of a sequence, where the difference between a term and its preceding term is always constant, known as common difference, i.e., d. The arithmetic progression is abbreviated as A.P.

The general form of an A.P. is \therefore a, a + d, a + 2d,... For example, 1, 9, 11, 13.., Here the common difference is 2. Hence it is an A.P.

In an A.P. with first term a and common difference d, the nth term (or the general term) is given by .

 $a_n = a + (n - 1)d.$

...where [a = first term, d = common difference, n = term number

Example: To find seventh term put n = 7

 $\therefore a_7 = a + (7 - 1)d \text{ or } a_7 = a + 6d$

The sum of the first n terms of an A.P. is given by $S_n = \frac{n}{2}[2a + (n - 1)d]$ or $\frac{n}{2}[a + 1]$ where, 1 is the last term of the finite AP.

If a, b, c are in A.P. then b = $\frac{a+c}{2}$ and b is called the arithmetic mean of a and c.