Class 9
 Important Formulas

FREE Education

Chapter 10 - Heron's Formula

| S.no | Term
 $\mathbf{1}$
 $\mathbf{2}$$\quad$Mensuration
 It is branch of mathematics which is concerned
 about the measurement of length , area and
 Volume of plane and Solid figure |
| :--- | :--- | :--- |
| $\mathbf{3}$ | a)The perimeter of plane figure is defined as the
 length of the boundary
 b)It units is same as that of length i.e. $\mathrm{m}, \mathrm{cm}, \mathrm{km}$ |
| Area | a)The area of the plane figure is the surface
 enclosed by its boundary
 b) It unit is square of length unit. i.e. $\mathrm{m}^{2}, ~ \mathrm{~km}$ |

Unit Conversion

$\mathbf{1}$ Meter	$\mathbf{1 0}$ Decimeter	$\mathbf{1 0 0}$ centimeter
$\mathbf{1}$ Decimeter	10 centimeter	100 millimeter
$\mathbf{1} \mathbf{K m}$	10 Hectometer	100 Decameter
$\mathbf{1}$ Decameter	10 meter	1000 centimeter
		$\mathbf{1 0 0}$ square Decimeter centimeter
$\mathbf{1}$ square Meter		

$\mathbf{1}$ square Decimeter	100 square centimeter	10000 square millimeter
$\mathbf{1}$ Hectare	100 square Decameter	10000 square meter
1 square myraimeter	100 square kilometer	10^{8} square meter

Perimeter and Area of Different Figure

N Shape Perimeter/height Area

1 Right angle $\quad P=b+h+d$ triangle

Base =b, Height
=h
Hypotenuse=d
2 Isosceles right angled triangle

$$
p=2 a+a \sqrt{2}
$$

$$
A=\frac{1}{2} a^{2}
$$

Height=a
Equal side $=a$

3 Any triangle of sides a,b ,c

4 Square
Side =a
$P=a+b+c$
$A=2 \sqrt{s(s-a)(s-b)(s-c)}$
Where $s=\frac{a+b+c}{2}$
This is called Heron's formula (sometimes called Hero's formula) is named after Hero of Alexandria

5 Rectangle of

$$
P=2 L+2 B
$$

$$
A=L X B
$$

Length and
breadth L and B respectively

6 Parallelograms $P=2 a+2 b$

Two sides are given $a s a$ and b
 Two sides are given as a and b

$$
P=2 a+2 b
$$

A= BaseX height

When the diagonal is also given
,say d
Then
$A=2 \sqrt{s(s-a)(s-b)(s-d)}$

Where $s=\frac{a+b+d}{2}$
7 Rhombus
Diagonal d_{1} and d_{2} are given

8 Quadrilateral
a) All the sides are given a, b, c,d
b) Both the diagonal are perpendicular to each other
c) When a diagonal and perpendicular to diagonal are given

$$
s=\frac{1}{2} \sqrt{d_{1}^{2}+d_{2}^{2}}
$$

a) $P=a+b+c+d$

$$
p=2 \sqrt{d_{1}^{2}+d_{2}^{2}} \quad A=\frac{1}{2} d_{1} d_{2}
$$

a)

$$
A=\sqrt{(s-a)(s-b)(s-c)(s-d)}
$$

where $s=\frac{a+b+c+d}{2}$
b)
$A=\frac{1}{2} d_{1} d_{2}$
where d_{1} and d_{2} are the diagonal
C) $A=\frac{1}{2} d\left(h_{1}+h_{2}\right)$
where d is diagonal and h_{1} and h_{2} are perpendicular to that

