Class 9

Important Formulas

Chapter 2 - Polynomial Expressions

A polynomial expression $S(x)$ in one variable x is an algebraic expression in x term as
$S(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots+a x+a_{0}$
Where $a_{n}, a_{n-1}, \ldots, a, a_{0}$ are constant and real numbers and a_{n} is not equal to zero

Some Important point to Note

S.no Points

$1 \quad a_{n}, a_{n-1}, a_{n-2}, \ldots . . a_{1}, a_{0}$ are called the coefficients for $x^{n}, x^{n-1}, \ldots . . x^{1}, x^{0}$
$2 \quad \mathrm{n}$ is called the degree of the polynomial
3 when $a_{n}, a_{n-1}, a_{n-2}, \ldots . . a_{1}, a_{0}$ all are zero, it is called zero polynomial
4 A constant polynomial is the polynomial with zero degree, it is a constant value polynomial

5 A polynomial of one item is called monomial, two items binomial and three items as trinomial

6 A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important concepts on Polynomial

Concept Description

Zero's or roots It is a solution to the polynomial equation $S(x)=0$ i.e. a number of the polynomial "a" is said to be a zero of a polynomial if $S(a)=0$.
If we draw the graph of $S(x)=0$, the values where the curve cuts the X -axis are called Zeros of the polynomial

Remainder Theorem's

If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression ($x-a$), then the remainder will be $p(a)$

```
Factor's
Theorem's
If x-a is a factor of polynomial p(x) then p(a)=0 or if p(a)
=0,x-a is the factor the polynomial p(x)
```

