Class 9 Important Formulas

 eVidyarthiFREE Education
Chapter 7 - Triangles

| S.no Terms | Descriptions |
| :--- | :--- | :--- |
| $\mathbf{1}$ Congruence | Two Geometric figure are said to be congruence if
 they are exactly same size and shape
 Symbol used is \cong |
| Two angles are congruent if they are equal | |
| Two circle are congruent if they have equal radii | |
| Two squares are congruent if the sides are equal | |
| Two triangles are congruent if three sides | |
| and three angles of one triangle is | |
| congruent to the corresponding sides and | |
| angles of the other | |

- Corresponding sides are equal

$$
\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{AC}=\mathrm{DF}
$$

- Corresponding angles are equal

$$
\angle A=\angle D, \angle B=\angle E, \angle C=\angle F
$$

- We write this as

$A B C \cong D E F$

- The above six equalities are between the corresponding parts of the two congruent triangles. In short form this is called

C.P.C.T

- We should keep the letters in correct order on both sides
$3 \quad \begin{aligned} & \text { Inequalities in } \\ & \text { Triangles }\end{aligned}$

1) In a triangle angle opposite to longer side is larger
2) In a triangle side opposite to larger angle is larger
3) The sum of any two sides of the triangle is greater than the third side

In triangle $A B C$
$A B+B C>A C$

Different Criterion for Congruence of the triangles

1 Side angle Side (SAS) congruence

- Two triangles are congruent if the two sides and included angles of one triangle is equal to the two sides and included angle

- It is an axiom as it cannot be proved so it is an accepted truth

- ASS and SSA type two triangles may not be congruent always

If following condition

$$
A B=D E, B C=E F
$$

$$
\angle B=\angle E
$$

Then
$A B C \cong D E F$

2 Angle side angle (ASA) congruence

- Two triangles are congruent if the two angles and included side of one triangle is equal to the corresponding angles and side
- It is a theorem and can be proved

If following condition

$B C=E F$
$\angle B=\angle E, \angle C=\angle F$
Then
$A B C \cong D E F$

3 Angle angle side(AAS) congruence

- Two triangles are congruent if the any two pair of angles and any side of one triangle is equal to the corresponding angles and side

- It is a theorem and can be proved

If following condition

$B C=E F$
$\angle A=\angle D, \angle C=\angle F$
Then
$A B C \cong D E F$

4 Side-Side-Side (SSS)
congruence

- Two triangles are congruent if the three sides of one triangle is equal to the three sides of the another

E
If following condition
$B C=E F, A B=D E, D F$
=AC
Then
$A B C \cong D E F$

5 Right angle -hypotenuseside(RHS) congruence

- Two right triangles are congruent if the hypotenuse and a side of the one triangle are equal to corresponding hypotenuse and side of the another

If following condition
$A C=D F, B C=E F$
Then
$A B C \cong D E F$

Some Important points on Triangles

\(\left.$$
\begin{array}{ll}\text { Terms } & \begin{array}{l}\text { Description } \\
\text { Orthocenter } \\
\text { Equilateral } \\
\text { Median }\end{array} \\
\begin{array}{l}\text { Point of intersection of the three altitude } \\
\text { of the triangle } \\
\text { triangle whose all sides are equal and all } \\
\text { angles are equal to } 60^{\circ}\end{array} \\
\text { Altitude } & \begin{array}{l}\text { A line Segment joining the corner of the } \\
\text { triangle to the midpoint of the opposite } \\
\text { side of the triangle } \\
\text { A line Segment from the corner of the } \\
\text { triangle and perpendicular to the }\end{array}
$$

opposite side of the triangle\end{array}\right\}\)| A triangle whose two sides are equal |
| :--- |
| Isosceles | | Point of intersection of the three median |
| :--- |
| of the triangle is called the centroid of |

In center

Circumcenter

Scalene triangle

Right Triangle Obtuse Triangle

Acute Triangle
the triangle
All the angle bisector of the triangle passes through same point
The perpendicular bisector of the sides of the triangles passes through same point
Triangle having no equal angles and no equal sides
Right triangle has one angle equal to 90°
One angle is obtuse angle while other two are acute angles
All the angles are acute

