CBSE Class 10 Maths Notes Chapter 11 Constructions

Determining a Point Dividing a given Line Segment, Internally in the given Ratio M : N

Let $A B$ be the given line segment of length $x \mathrm{~cm}$. We are required to determine a point P dividing it internally in the ratio $m: n$.

Steps of Construction:

- Draw a line segment $\mathrm{AB}=\mathrm{xcm}$.
- Make an acute $\angle B A X$ at the end A of $A B$.
- Use a compass of any radius and mark off arcs. Take $(m+n)$ points $A_{1}, A_{2}, \ldots A_{m}, A_{m+1}, \ldots, A_{m+n}$ along $A X$ such that $A A_{1}=A_{1} A_{2}=\ldots=A_{m+n-1}, A_{m+n}$
- Join $A_{m+n} B$.
- Passing through A_{m}, draw a line $A_{m} P \| A_{m+n} B$ to intersect $A B$ at P. The point P so obtained is the A required point which divides $A B$ internally in the ratio $m: n$.

Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known

Steps of Construction:

- Draw a circle with centre O of the given radius.

- Take a given point P on the circle.
- Join OP.

- Construct $\angle O P T=90^{\circ}$.

- Produce TP to T^{\prime} to get TPT' as the required tangent.

Construction of a Tangent at a Point on a Circle to the Circle when its Centre is not Known

If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of the circle. The point of intersection of perpendicular bisectors of these chords gives the centre of the circle. Then we can proceed as above.

Construction of a Tangents from an External Point to a Circle when its Centre is Known

Steps of Construction:

- Draw a circle with centre 0 .
- Join the centre O to the given external point P.
- Draw a right bisector of OP to intersect OP at Q .
- Taking Q as the centre and $\mathrm{OQ}=\mathrm{PQ}$ as radius, draw a circle to intersect the given circle at T and T^{\prime}.
- Join PT and PT' to get the required tangents as PT and PT^{\prime}.

Construction of a Tangents from an External Point to a Circle when its Centre is not Known

If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of a circle. The point of intersection of perpendicular bisectors of the chords gives the centre of the circle. Then we can proceed as above.

Construction of a Triangle Similar to a given Triangle as per given Scale Factor $\frac{m}{n}, \mathbf{m}<\mathbf{n}$.

Let $\triangle A B C$ be the given triangle. To construct a $\triangle A^{\prime} B^{\prime} C^{\prime}$ such that each of its sides is $\frac{m}{n}(m<n)$ of the corresponding sides of $\triangle A B C$.

Steps of Construction:

- Construct a triangle $A B C$ by using the given data.
- Make an acute angle $\angle B A X$, below the base $A B$.
- Along $A X$, mark n points $A_{1}, A_{2} \ldots, A_{n}$, such that $A A_{1}=A_{1} A_{2}=\ldots=A_{m-1} A_{m}=\ldots A_{n-1} A_{n}$.
- Join $A_{n} B$.
- From A_{m}, draw $A_{m} B^{\prime}$ parallel to $A n B$, meeting $A B$ at B^{\prime}.
- From B^{\prime}, draw $B^{\prime} C^{\prime}$ parallel to $B C$, meeting $A C$ at C^{\prime}.

Triangle $A B^{\prime} C^{\prime}$ is the required triangle, each of whose sides is $\frac{m}{n}(m<n)$ of the corresponding sides of $\triangle A B C$.

Construction of a Triangle Similar to a given Triangle as per given Scale Factor $\frac{m}{n}, \mathrm{~m}>\mathrm{n}$.

Let $\triangle A B C$ be the given triangle and we want to construct a $\triangle A B^{\prime} C^{\prime}$, such that each of its sides is $\frac{m}{n}(m>n)$ of the corresponding side of $\triangle A B C$.

Steps of Construction:

- Construct a $\triangle \mathrm{ABC}$ by using the given data.
- Make an acute angle $\angle B A X$, below the base $A B$. Extend $A B$ to $A Y$ and $A C$ to $A Z$.
- Along $A X$, mark m points $A_{1}, A_{2} \ldots, A_{n}, . . A_{m}$, such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=\ldots=A_{n-1} A_{n}=\ldots=A_{m-1} A_{m}$
- Join $A_{n} B$.
- From A_{m}, draw $A_{m} B^{\prime}$ parallel to $A_{n} B$, meeting $A Y$ produced at B^{\prime}.
- From B^{\prime}, draw $B^{\prime} C^{\prime}$ parallel to $B C$, meeting $A Z$ produced at C^{\prime}.
- Triangle $A B^{\prime} C^{\prime}$ is the required triangle, each of whose sides is $\left(\frac{m}{n}\right)(m>n)$ of the corresponding sides of $\triangle A B C$.

