CBSE Class 9 Maths Notes Chapter 12 Constructions

1. Need of Accurate Figures: Sometimes one needs an accurate figure, for example, to draw a map of a building to be constructed, to design tools and various parts of a machine, to draw road maps, etc. To draw such figures some basic geometrical instruments are needed.
2. Geometry Box: A geometry box contains the following basic geometrical instruments

- A graduated scale, on one side of which centimetres and Millimetres are marked off and on the other side inches and their parts is marked off.
- A pair of set squares, one with angles $90^{\circ}, 60^{\circ}$ and 30° and other with angles $90^{\circ}, 45^{\circ}$ and 45°.
- A pair of dividers (or a divider) with adjustments.
- A pair of compasses (or a compass) with the provision of fitting a pencil at one end.
- A protractor.

Normally, all these instruments are needed in drawing a geometrical figure such as a triangle, a circle, a quadrilateral a polygon etc. with given measurements but a geometrical construction is the process of drawing a geometrical figure using only two instruments-an ungraduated ruler, also called a straight edge and a-compass. In construction, where measurements are also required, we may use a graduated scale and protractor also.
3. Basic Constructions
(I) To construct the bisector of a given angle

Given: An $\angle A B C$.
Required: To construct it bisector.

Steps of Construction:

(i) Taking B as centre and any radius, draw an arc to intersect the rays $B A$ and $B C$, say at E and D, respectively.
(ii) Next, taking D and E as centres and with the radius more than $\frac{1}{2} \mathrm{DE}$, draw arcs to intersect each other, say at F.
(iii) Draw the ray $B F$. This ray $B F$ is the required bisector of the $\angle A B C$.

Proof: Join DF and EF.
In $\triangle B E F$ and $\triangle B D F$,
$B E=B D$ (Radii of the same arc)
$\mathrm{EF}=\mathrm{DF}$ (Arcs of radii)
$B F=B F$ (Common)
Therefore, $\triangle \mathrm{BEF}=\triangle \mathrm{BDF}$ (SSS rule)
This gives $\angle E B F=\angle D B F(C P C T)$

(II) To construct the perpendicular bisector of a given line segment

Given: A line segment AB.
Required: To construct its perpendicular bisector.

Steps of Construction:

(i) Taking A and B as centres and radius more than $\frac{1}{2} A B$, draw arcs on both sides of the line segment $A B$ (to intersect each other).
(ii) Let these arcs intersect each other at P and Q . Join PQ .
(iii) Let $P Q$ intersect $A B$ at the point M. Then, line $P M Q$ is the required perpendicular bisector of $A B$.

Proof: Join A and B to both P and Q to form $A P, A Q, B P$ and $B Q$.
In $\triangle P A Q$ and $\triangle P B Q$,
$\mathrm{AP}=\mathrm{BP}$ (Arcs of equal radii)
$A Q=B Q$ (Arcs of equal radii)
$P Q=P Q$ (Common)
Therefore, $\triangle \mathrm{PAQ}=\triangle \mathrm{PBQ}$ (SSS rule)
So, $\angle A P M=\angle B P M$ (CPCT)
Now, in $\triangle P M A$ and $\triangle P M B$,
AP = BP (As before)
$P M=P M$ (Common)
$\angle A P M=\angle B P M$ (Proved above)
Therefore, $\triangle P M A=\triangle P M B$ (SAS rule)
So, $\mathrm{AM}=\mathrm{BM}$ and $\angle \mathrm{PMA}=\angle \mathrm{PMB}$
As $\angle \mathrm{PMA}+\angle \mathrm{PMB}=180^{\circ}$ (Linear pair axiom)
We get, $\angle \mathrm{PMA}=\angle \mathrm{PMB}=90^{\circ}$
Therefore, $P M$, i.e., $P M Q$ is the perpendicular bisector of $A B$.

(III) Constructs an angle of 60° at the initial point of a given ray

Given: A ray $A B$ with initial point A.
Required: To construct a ray $A C$ such that $\angle C A B=60^{\circ}$.

Steps of Construction:

(i) Taking A as the centre and some radius, draw an arc of a circle which intersects $A B$, say at a point D.
(ii) Taking D as the centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point E.
(iii) Draw the ray $A C$ passing through E. Then $\angle C A B$ required the angle of 60°.

Proof: Join DE.
Then, $\mathrm{AB}=\mathrm{AD}=\mathrm{DE}$ (By construction)
Therefore, $\triangle E A D$ is an equilateral triangle and the $\angle E A D$ which is the same as $\angle C A B$ is equal to 60°.

- SAS Two triangles are congruent if any two sides and the included angle of one triangle are equal to any two sides and the included angle of the other triangle.
- SSS Two triangles are congruent if the three sides of one triangle are equal to the three sides of the other triangle.
- ASA Two triangles are congruent if any two angles and the included side of one triangle are equal to the two angles and the included side of the other triangle.
- RHS Two right triangles are congruent if the hypotenuse and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.

5. The uniqueness of a Triangle

A triangle is unique, if

- two sides and the included angle is given,
- three sides are given,
- two angles and the included side is given and
- in a right triangle, hypotenuse and one side are given.

6. Requirement for the Construction of a Triangle: For constructing a triangle, at least three parts of a triangle have to be given hut, not all combinations of three parts and sufficient for the purpose, e.g., if two sides and an angle (not the included angle) are given, then it is not always possible to construct such a triangle uniquely.

7. Some Constructions of Triangles

(I) To construct a triangle, given its base, a base angle and sum of other two sides

Given: The base $B C$, a base angle, say $\angle B$ and the sum $A B+A C$ of the other two sides of a $\triangle A B C$.
Required: To construct the $\triangle A B C$.

Steps of Construction:

(i) Draw the base $B C$ and at the point B make an angle, say $X B C$ equal to the given angle.
(ii) Cut a line segment $B D$ equal to $A B+A C$ from the ray $B X$.
(iii) Join DC and make an angle DCY equal to $\angle B D C$.
(iv) Let $C Y$ intersect $B X$ at A (see figure).

Justification

Base BC and CB are drawn as given.
Next in $\triangle A C D$,
$\angle A C D=\angle A D C$ (By construction)
$A C=A D$ (Sides opposite to equal angles of a triangle are equal)
$A B=B D-A D=B D-A C$
$\Rightarrow A B+A C=B D$

Alternative Method

(i) Draw the base $B C$ and at the point B make an angle, say $X B C$ equal to the given angle.
(ii) Cut a line segment $B D$ equal to $A P+A C$ from the ray $B X$.
(iii) Join DC.
(iv) Draw perpendicular bisector PQ of CD to intersect BD at a point A .
(v) Join AC.

Then, $A B C$ is the required triangle.

Justification

Base BC and CB are drawn as given.
A lies on the perpendicular bisector of CD.

$$
\begin{aligned}
& A D=A C \\
& A B=B D-A D=B D-A C \\
& A B+A C=B D
\end{aligned}
$$

Remark: The construction of the triangle is not possible if the sum $A B+A C<B C$.
(II) To construct a triangle given its base, a base angle and the difference of the other two sides

Given: The base $B C$, a base angle, say $C B$ and the difference of other two sides $A B-A C$ or $A C-A B$.
Required: To construct the $\triangle A B C$.

There are the following two cases
Case (I): Let $A B>A C$, i.e., $A B-A C$ is given.

Steps of Construction:

(i) Draw the base BC and at point B make an angle, say XBC equal to the given angle.
(ii) Cut the line segment $B D$ equal to $A B-A C$ from ray $B X$.
(iii) Join DC and draw the perpendicular bisector, say PQ of DC.
(iv) Let it intersect BX at a point A . Join AC .

Then, ABC is the required triangle.

Justification

Base $B C$ and $\angle B$ are drawn as given.
The point A lies on the perpendicular bisector of DC .
$A D=A C$
So, $B D=A B-A D=A B-A C$
Case (II): Let $A B<A C$ i.e., $A C-A B$ is given.

Steps of Construction:

(i) Draw the base $B C$ and at point B make an angle, say $X B C$ equal to the given angle.
(ii) Cutline segment $B D$ equal to $A C-A B$ from the line $B X$ extended on an opposite side of line segment $B C$.
(iii) Join DC and draw the perpendicular bisector, say PQ of DC.
(iv) Let PQ intersect $B X$ at A. Join $A C$.

Then, ABC is the required triangle.

Justification

Base BC and CB are drawn as given.
The point A lies on the perpendicular bisector of $D C$.
$A D=A C$
So, $B D=A D-A B=A C-A B$

(III) To construct a triangle, given its perimeter and its two base angles

Given: The base angles, say $\angle B$ and $\angle C$ and $B C+C A+A B$.
Required: To construct the $\triangle A B C$.
Steps of Construction:
(i) Draw a line segment, say $X Y$ equal to $B C+C A+A B$.
(ii) Make angles $L X Y$ equal to $\angle B$ and $M Y X$ equal to $\angle C$.
(iii) Bisect $\angle L X Y$ and $\angle M Y X$. Let these bisectors intersect a point A.

(iv) Draw perpendicular bisectors $P Q$ of $A X$ and $R S$ of $A Y$.
(v) Let $P Q$ intersect $X Y$ at B and $R S$ intersect $X Y$ at C. Join $A B$ and $A C$.

Then, $A B C$ is the required triangle.

Justification

B lies on the perpendicular bisector $P Q$ of $A X$.
$\therefore \mathrm{XB}=\mathrm{AB}$
C lies on the perpendicular bisector $R S$ of $A Y$.
$\therefore C Y=A C$
This gives
$B C+C A+A B=B C+X B+C Y=X Y$
Again, $\angle B A X+\angle A X B$ (in $\triangle A X B, A B=X B$)
and $\angle A B C=\angle B A X+\angle A X B=2 \angle A X B=\angle L X Y$
Next, $\angle C A Y=\angle A Y C($ in $\triangle A Y C, A C=C Y)$
and $\angle A C B=\angle C A Y+\angle A Y C=2 \angle A Y C=\angle M Y X$
Thus, we have what is required.

