CBSE Class 10 Maths Notes Chapter 7 Coordinate Geometry

- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).

- The line $X^{\prime} O X$ is called the X-axis and $Y O Y^{\prime}$ is called the Y-axis.
- The part of intersection of the X-axis and Y-axis is called the origin O and the co-ordinates of O are (0 , $0)$.
- The perpendicular distance of a point P from the Y-axis is the ' x ' co-ordinate and is called the abscissa.
- The perpendicular distance of a point P from the X-axis is the ' y ' co-ordinate and is called the ordinate.
- Signs of abscissa and ordinate in different quadrants are as given in the diagram:

- Any point on the X-axis is of the form $(x, 0)$.
- Any point on the Y-axis is of the form $(0, y)$.
- The distance between two points $P(x 1, y 1)$ and $Q(x 2, y 2)$ is given by
$\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Note. If O is the origin, the distance of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the origin $\mathrm{O}(0,0)$ is given by $\mathrm{OP}=\sqrt{x^{2}+y^{2}}$

Section formula. The coordinates of the point which divides the line segment joining the points $A(x 1, y 1)$ and $B(x 2, y 2)$ internally in the ratio $m: n$ are:

$P(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

The above formula is section formula. The ratio $\mathrm{m}: \mathrm{n}$ can also be written as $\frac{m}{n}: 1$ or $\mathrm{k}: 1$, The co-ordinates of P can also be written as $\mathrm{P}(\mathrm{x}, \mathrm{y})=\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+1}$

The mid-point of the line segment joining the points $P(x 1, y 1)$ and $Q(x 2, y 2)$ is

$\xrightarrow[\mathbf{P}\left(x_{1}, y_{1}\right)]{\stackrel{\mathrm{A}(x, y)}{ }} \underset{\mathbf{Q}\left(x_{2}, y_{2}\right)}{ }$

$A(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Here $\mathrm{m}: \mathrm{n}=1: 1$.
Area of a Triangle. The area of a triangle formed by points $A(x 1 y 1), B(x 2, y 2)$ and $C(x 3, y 3)$ is given by $|\Delta|$, where $\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
where Δ represents the absolute value.

- Three points are collinear if $|A|=0$.
- If P is centroid of a triangle then the median divides it in the ratio $2: 1$. Co-ordinates of P are given by $P=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Area of a quadrilateral, $A B C D=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A D C)$

