CBSE Class 10 Maths Notes Chapter 8 Introduction to Trigonometry

- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
- Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.
- Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios.
 Consider triangle ABC right-angled at B. These ratios are always defined with respect to acute angle 'A' or angle 'C.
- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the 'θ' being considered.

Let us look at both cases:

In a right triangle ABC, right-angled at B. Once we have identified the sides, we can define six t-Ratios with respect to the sides.

case I	case II		
(i) sine A = $\frac{perpendicular}{hypotenuse} = \frac{BC}{AC}$	(i) sine C = $\frac{perpendicular}{hypotenuse} = \frac{AB}{AC}$		
(ii) cosine A = $\frac{base}{hypotenuse} = \frac{AB}{AC}$	(ii) cosine C = $\frac{base}{hypotenuse} = \frac{BC}{AC}$		
(iii) tangent A = $\frac{perpendicular}{base} = \frac{BC}{AB}$	(iii) tangent C = $\frac{perpendicular}{base} = \frac{AB}{BC}$		
(iv) cosecant A = $\frac{hypotenuse}{perpendicular} = \frac{AC}{BC}$	(iv) cosecant C = $\frac{hypotenuse}{perpendicular} = \frac{AC}{AB}$		
(v) secant A = $\frac{hypotenuse}{base} = \frac{AC}{AB}$	(v) secant C = $\frac{hypotenuse}{base} = \frac{AC}{BC}$		
(v) cotangent A = $\frac{base}{perpendicular} = \frac{AB}{BC}$	(v) cotangent C = $\frac{base}{perpendicular} = \frac{BC}{AB}$		

Note from above six relationships:

cosecant A = $\frac{1}{sinA}$, secant A = $\frac{1}{cosineA}$, cotangent A = $\frac{1}{tanA}$,

However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are:

sine A is sin A cosine A is cos A tangent A is tan A cosecant A is cosec A secant A is sec A cotangent A is cot A

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$

- $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \sin^2 \theta = 1 \cos^2 \theta \Rightarrow \cos^2 \theta = 1 \sin^2 \theta$
- $\csc^2 \theta \cot^2 \theta = 1 \Rightarrow \csc^2 \theta = 1 + \cot^2 \theta \Rightarrow \cot^2 \theta = \csc^2 \theta 1$
- $\sec^2 \theta \tan^2 \theta = 1 \Rightarrow \sec^2 \theta = 1 + \tan^2 \theta \Rightarrow \tan^2 \theta = \sec^2 \theta 1$
- $\sin \theta \csc \theta = 1 \Rightarrow \cos \theta \sec \theta = 1 \Rightarrow \tan \theta \cot \theta = 1$

ALERT:

A t-ratio only depends upon the angle ' θ ' and stays the same for same angle of different sized right triangles.

Value of t-ratios of specified angles:

∠A	0°	30°	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	√3	not defined
cosec A	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	√2	2	not defined
cot A	not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

The value of sin θ and cos θ can never exceed 1 (one) as opposite side is 1. Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled Δ .

't-RATIOS' OF COMPLEMENTARY ANGLES

If $\triangle ABC$ is a right-angled triangle, right-angled at B, then $\angle A + \angle C = 90^{\circ} [\because \angle A + \angle B + \angle C = 180^{\circ} \text{ angle-sum-property}]$ or $\angle C = (90^{\circ} - \angle A)$ Thus, $\angle A$ and $\angle C$ are known as complementary angles and are related by the following relationships:

 $sin (90^{\circ} - A) = cos A; cosec (90^{\circ} - A) = sec A$ $cos (90^{\circ} - A) = sin A; sec (90^{\circ} - A) = cosec A$ $tan (90^{\circ} - A) = cot A; cot (90^{\circ} - A) = tan A$