CBSE Class 10 Maths Notes Chapter 8 Introduction to Trigonometry

- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
- Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.
- Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios.

Consider triangle ABC right-angled at B . These ratios are always defined with respect to acute angle ' A ' or angle 'C.

- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the ' θ ' being considered.

Let us look at both cases:

In a right triangle ABC , right-angled at B . Once we have identified the sides, we can define six t-Ratios with respect to the sides.

case I	case II
(i) sine $\mathrm{A}=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}$	(i) sine $\mathrm{C}=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{A B}{A C}$
(ii) cosine $\mathrm{A}=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}$	(ii) cosine $\mathrm{C}=\frac{\text { base }}{\text { hypotenuse }}=\frac{B C}{A C}$
(iii) tangent $\mathrm{A}=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}$	(iii) tangent $\mathrm{C}=\frac{\text { perpendicular }}{\text { base }}=\frac{A B}{B C}$
(iv) cosecant $\mathrm{A}=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}$	(iv) cosecant $\mathrm{C}=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{A B}$
(v) secant $\mathrm{A}=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{A B}$	(v) secant $\mathrm{C}=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{B C}$
(v) cotangent $\mathrm{A}=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}$	(v) cotangent $\mathrm{C}=\frac{\text { base }}{\text { perpendicular }}=\frac{B C}{A B}$

Note from above six relationships:
cosecant $A=\frac{1}{\sin A}$, secant $A=\frac{1}{\operatorname{cosine} A}, \operatorname{cotangent} A=\frac{1}{\tan A}$,

However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are:
sine A is $\sin A$
cosine A is $\cos A$
tangent A is $\tan A$
cosecant A is cosec A
secant A is $\sec A$
cotangent A is $\cot A$

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

- $\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta$
- $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \Rightarrow \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \Rightarrow \cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1$
- $\sec ^{2} \theta-\tan ^{2} \theta=1 \Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1$
- $\sin \theta \operatorname{cosec} \theta=1 \Rightarrow \cos \theta \sec \theta=1 \Rightarrow \tan \theta \cot \theta=1$

ALERT:

A t-ratio only depends upon the angle ' θ ' and stays the same for same angle of different sized right triangles.

Value of t -ratios of specified angles:

$\angle A$	0°	30°	45°	60°	90°
$\sin A$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos A$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan A$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} A$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec A$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$
$\cot A$	not defined			not defined	

The value of $\sin \theta$ and $\cos \theta$ can never exceed 1 (one) as opposite side is 1 . Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled Δ.

't-RATIOS' OF COMPLEMENTARY ANGLES

If $\triangle A B C$ is a right-angled triangle, right-angled at B, then $\angle A+\angle C=90^{\circ}\left[\because \angle A+\angle B+\angle C=180^{\circ}\right.$ angle-sum-property $]$ or $\angle C=\left(90^{\circ}-\angle A\right)$

Thus, $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are known as complementary angles and are related by the following relationships: $\sin \left(90^{\circ}-A\right)=\cos A ; \operatorname{cosec}\left(90^{\circ}-A\right)=\sec A$
$\cos \left(90^{\circ}-A\right)=\sin A ; \sec \left(90^{\circ}-A\right)=\operatorname{cosec} A$
$\tan \left(90^{\circ}-A\right)=\cot A ; \cot \left(90^{\circ}-A\right)=\tan A$

