CBSE Class 10 Maths Notes Chapter 12 Surface Areas and Volumes

TABLE FOR SURFACE AREA AND VOLUME

Solid	Figures	Curved surface area (1)	Plane area (2)	Total area $[1+2]$	Volume	Remarks
Cuboid		Also known as lateral surface area $=2(l h+b h)$	Area of: Top face $=l b$ Bottom face $=l b$ $\therefore l b+l b=2 l b$	$2(b b+b h+h l)$	l.b.h	$1:$ length b : breadth h : height
Cube		Lateral surface area $=4 a^{2}$	$\begin{aligned} & \text { Area of: } \\ & \text { Top face }=a^{2} \\ & \text { Bottom face }=a^{2} \\ & \therefore a^{2}+a^{2}=2 a^{2} \end{aligned}$	$4 a^{2}+2 a^{2}=6 a^{2}$	a^{3}	a : Side of cube
Right circular cylinder closed at top		Curved surface area $=2 \pi c h$	Area of: Top face $=\pi r^{2}$ Bottom face $=\pi r^{2}$ $\therefore \pi r^{2}+\pi r^{2}=2 \pi r^{2}$	$\begin{gathered} 2 \pi r^{2}+2 \pi h t \\ O r \\ 2 \pi r(r+h) \end{gathered}$	$\pi r^{2} h$	r : radius h : height of cylinder
Right circular cylinder open at top		Curved surface area $=2 \pi \mathrm{ch}$	Area of: Top face $=0$ Bottom face $=\pi r^{2}$ $\therefore 0+\pi r^{2}=\pi r^{2}$	$\begin{gathered} 2 \pi r h+\pi r^{2} \\ \text { Or, } \\ \pi r(2 h+r) \end{gathered}$	$\pi r^{2} h$	r : radius h : height of cylinder
Hollow cylinder (Pipe)		$2 \pi R h$ - External surface area $=2 \pi R h$ - Intemal surface area $=2 \pi r h$	Area of: Top face $=\pi\left(R^{2}-r^{2}\right)$ Bottom face $=\pi\left(R^{2}-r^{2}\right)$	$\begin{aligned} & 2 \pi R h+2 \pi r h+ \\ & 2 \pi\left(R^{2}-r^{2}\right) \end{aligned}$		R : Radius of outer base r : radius of inner base $h=h e i g h t$
Cone		$\pi \pi l$	Area of: Bottom Face $=\pi r^{2}$	$\begin{aligned} & \pi r^{2}+\pi r l \\ & O r \cdot \pi r(r+1) \end{aligned}$	$\frac{1}{3} \pi r^{2} h$	$\begin{aligned} & h=\text { height of cone } \\ & r=\text { radius of cone } \\ & l=\text { slant height } \\ & =\sqrt{h^{2}+r^{2}} \end{aligned}$
Frustum		$\pi d(R+r)$	Area of: Top Face $=\pi r^{2}$ Bottom Face $=\pi R^{2}$	$\begin{aligned} & \pi r^{2}+\pi R^{2} \\ & +\pi l(R+r) \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{1}{3} \pi h . \\ \left(R^{2}+r^{2}\right. \\ +R r) \end{array}$	$\begin{aligned} & h=\text { height of frustum } \\ & r=\text { radius of top face } \\ & R=\text { Radius of base } \\ & l=\text { slant height } \\ & \hline \end{aligned}$
Sphere	\square	$4 \pi r^{2}$	None	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$	r : radius of sphere
Hemisphere		$2 \pi r^{2}$	$\pi \pi^{2}$	$3 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$	r : radius of hemisphere
Spherical shell		$\begin{aligned} & \hline 4 \pi R^{2} \text { (Outer) } \\ & 4 \pi r^{2} \text { (Inner) } \end{aligned}$	None	$4 \pi R^{2}+4 \pi r^{2}$	$\begin{aligned} & \frac{4}{3} \pi . \\ & \left(R^{3}-r^{3}\right) \end{aligned}$	R:Radius of outer shell r :Radius of inner shell

Cone on a Cylinder.

$r=$ radius of cone \& cylinder;
$h_{1}=$ height of cone
$h_{2}=$ height of cylinder
Total Surface area $=$ Curved surface area of cone + Curved surface area of cylinder + area of circular base
$=\pi r l+2 \pi r h_{2}+\pi r^{2}$;
Slant height, $\mathrm{I}=\sqrt{r^{2}+h_{1}^{2}}$
Total Volume $=$ Volume of cone + Volume of cylinder
$=\frac{1}{3} \pi r^{2} h_{1}+\pi r^{2} h_{2}$

Cone on a Hemisphere:

h = height of cone;
I = slant height of cone $=\sqrt{r^{2}+h^{2}}$
r = radius of cone and hemisphere
Total Surface area $=$ Curved surface area of cone + Curved surface area of hemisphere $=\pi r l+2 \pi r^{2}$
Volume $=$ Volume of cone + Volume of hemisphere $=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$

Conical Cavity in a Cylinder

$r=$ radius of cone and cylinder;
$h=$ height of cylinder and conical cavity;
I = Slant height
Total Surface area $=$ Curved surface area of cylinder + Area of bottom face of cylinder + Curved surface area of cone $=2 \pi r h+\pi r^{2}+\pi r l$
Volume $=$ Volume of cylinder - Volume of cone $=\pi r^{2} h-\frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi r^{2} h$

Cones on Either Side of Cylinder.

r = radius of cylinder and cone;
$h_{1}=$ height of cylinder
$h_{2}=$ height of cones
Slant height of cone, $\mathrm{I}=\sqrt{h_{2}^{2}+r^{2}}$
Surface area $=$ Curved surface area of 2 cones + Curved surface area of cylinder $=2 \pi r l+2 \pi r h_{1}$
Volume $=2($ Volume of cone $)+$ Volume of cylinder $=\frac{2}{3} \pi r^{2} h_{2}+\pi r^{2} h_{1}$

Cylinder with Hemispherical Ends.

$r=$ radius of cylinder and hemispherical ends;
$h=$ height of cylinder
Total surface area= Curved surface area of cylinder + Curved surface area of 2 hemispheres $=2 \pi r h+4 \pi r^{2}$
Volume $=$ Volume of cylinder + Volume of 2 hemispheres $=\pi r^{2} h+\frac{4}{3} \pi r^{3}$

Hemisphere on Cube or Hemispherical Cavity on Cube

a = side of cube;
$r=$ radius of hemisphere.
Surface area = Surface area of cube - Area of hemisphere face + Curved surface area of hemisphere $=6 a^{2}-\pi r^{2}+2 \pi r^{2}=6 a^{2}+\pi r^{2}$
Volume $=$ Volume of cube + Volume of hemisphere $=a^{3}+\frac{4}{3} \pi r^{3}$

Hemispherical Cavity in a Cylinder

r = radius of hemisphere;
$h=$ height of cylinder
Total surface area = Curved surface area of cylinder + Surface area of base + Curved surface area of hemisphere
$=2 \pi r h+\pi r^{2}+2 \pi r^{2}=2 \pi r h+3 \pi r^{2}$
Volume $=$ Volume of cylinder - Volume of hemisphere $=\pi r^{2} h-\frac{2}{3} \pi r^{3}$

