CBSE Class 10 Maths Notes Chapter 12 Surface Areas and Volumes

TABLE FOR SURFACE AREA AND VOLUME						
Solid	Figures	Curved surface area (1)	Plane area (2)	Total area [1 + 2]	Volume	Remarks
Cuboid		Also known as lateral surface area = 2(lh + bh)	Area of: Top face = lb Bottom face = lb $\therefore lb + lb = 2lb$	2(lb + bh + hl)	l.b.h	l : length b : breadth h : height
Cube		Lateral surface area = 4a ²	Area of: Top face = a^2 Bottom face = a^2 $\therefore a^2 + a^2 = 2a^2$	$4a^2 + 2a^2 = 6a^2$	a ³	a : Side of cube
Right circu- lar cylinder closed at top		Curoed surface area = 2πrh	Area of: Top face = πr^2 Bottom face = πr^2 $\therefore \pi r^2 + \pi r^2 = 2\pi r^2$	$2\pi r^2 + 2\pi r h$ Or, $2\pi r (r + h)$	πr²h	r : radius h : height of cylinder
Right circu- lar cylinder open at top		Curved surface area = 2лrh	Area of: Top face = 0 Bottom face = πr^2 $\therefore 0 + \pi r^2 = \pi r^2$	$2\pi rh + \pi r^2$ Or, $\pi r(2h + r)$	πr ² h	r : radius h : height of cylinder
Hollow cylinder (Pipe)	R	2πRh • External sur- face area = 2πRh • Internal sur- face area = 2πrh	Area of: Top face $= \pi(R^2 - r^2)$ Bottom face $= \pi(R^2 - r^2)$	$2\pi Rh + 2\pi rh + 2\pi rh + 2\pi (R^2 - r^2)$	πR ² h - πr ² h (External Vol Internal Vol.)	R : Radius of outer base r : radius of inner base h = height
Cone	Arr	ग्र ग	Area of: Bottom Face = πr^2	$\pi r^2 + \pi r l$ Or, $\pi r(r + l)$	1/3 πr ² h	h = height of cone r = radius of cone l = slant height $= \sqrt{h^2 + r^2}$
Frustum	In R	πl(R + r)	Area of: Top Face = πr^2 Bottom Face = πR^2	$\pi r^2 + \pi R^2 + \pi l(R + r)$	$\frac{1}{3}\pi h$. ($R^2 + r^2 + Rr$)	h = height of frustum r = radius of top face R = Radius of base l = slant height
Sphere	\bigcirc	470 ⁻²	None	4πr ²	4/3 π ⁻³	r : radius of sphere
Hemisphere	0	270 ²	πr ²	3πr ²	$\frac{2}{3}\pi^{3}$	r : radius of hemisphere
Spherical shell	Q	4πR ² (Outer) 4πr ² (Inner)	None	$4\pi R^2 + 4\pi r^2$	$\frac{4}{3}\pi$. ($R^3 - r^3$)	R:Radius of outer shell r:Radius of inner shell

SURFACE AREA AND VOLUME OF COMBINATIONS

Cone on a Cylinder.

r = radius of cone & cylinder;

 h_1 = height of cone

 h_2 = height of cylinder

Total Surface area = Curved surface area of cone + Curved surface area of cylinder + area of circular base = $\pi rl + 2\pi rh_2 + \pi r^2$;

Slant height, I = $\sqrt{r^2+h_1^2}$

Total Volume = Volume of cone + Volume of cylinder 1 = -2h

 $=rac{1}{3}\pi r^{2}h_{1}+\pi r^{2}h_{2}$

Cone on a Hemisphere:

h = height of cone;

l = slant height of cone = $\sqrt{r^2+h^2}$

r = radius of cone and hemisphere

Total Surface area = Curved surface area of cone + Curved surface area of hemisphere = $\pi rl + 2\pi r^2$ Volume = Volume of cone + Volume of hemisphere = $\frac{1}{3}\pi r^2h + \frac{2}{3}\pi r^3$

Conical Cavity in a Cylinder

r = radius of cone and cylinder;

h = height of cylinder and conical cavity;

l = Slant height

Total Surface area = Curved surface area of cylinder + Area of bottom face of cylinder + Curved surface area of cone = $2\pi rh + \pi r^2 + \pi rl$

Volume = Volume of cylinder – Volume of cone = $\pi r^2 h - rac{1}{3}\pi r^2 h = rac{2}{3}\pi r^2 h$

Cones on Either Side of Cylinder.

r = radius of cylinder and cone;

 h_1 = height of cylinder

 h_2 = height of cones

Slant height of cone, I = $\sqrt{h_2^2+r^2}$

Surface area = Curved surface area of 2 cones + Curved surface area of cylinder = $2\pi rl + 2\pi rh_1$ Volume = 2(Volume of cone) + Volume of cylinder = $\frac{2}{3}\pi r^2h_2 + \pi r^2h_1$

Cylinder with Hemispherical Ends.

r = radius of cylinder and hemispherical ends;

h = height of cylinder

Total surface area = Curved surface area of cylinder + Curved surface area of 2 hemispheres = $2\pi rh + 4\pi r^2$ Volume = Volume of cylinder + Volume of 2 hemispheres = $\pi r^2 h + \frac{4}{3}\pi r^3$

Hemisphere on Cube or Hemispherical Cavity on Cube

r = radius of hemisphere.

Surface area = Surface area of cube – Area of hemisphere face + Curved surface area of hemisphere = $6a^2 - \pi r^2 + 2\pi r^2 = 6a^2 + \pi r^2$

Volume = Volume of cube + Volume of hemisphere = $a^3 + rac{4}{3}\pi r^3$

Hemispherical Cavity in a Cylinder

r = radius of hemisphere;

h = height of cylinder

Total surface area = Curved surface area of cylinder + Surface area of base + Curved surface area of hemisphere

 $= 2\pi rh + \pi r^2 + 2\pi r^2 = 2\pi rh + 3\pi r^2$

Volume = Volume of cylinder – Volume of hemisphere = $\pi r^2 h - rac{2}{3}\pi r^3$