CBSE Class 10 Maths Notes Chapter 13 Statistics

MEAN (AVERAGE): Mean [Ungrouped Data] – Mean of n observations, x1, x2, x3 ... xn, is

MEAN [Grouped Data]: The mean for grouped data can be found by the following three methods: (i) Direct Mean Method:

$$\overline{\mathbf{X}} = \frac{\sum f_i \mathbf{x}_i}{\sum f_i}$$
Class Mark =
$$\frac{Upper \quad Class \quad Limit+Lower \quad Class \quad Limit}{2}$$

Note: Frequency of a class is centred at its mid-point called class mark.

(ii) Assumed Mean Method: In this, an arbitrary mean 'a' is chosen which is called, 'assumed mean', somewhere in the middle of all the values of x.

$$\overline{\chi} = a + \frac{\sum f_i d_i}{\sum f_i}$$

...[where $d_i = (x_i - a)$]

(iii) Step Deviation Method:

$$\overline{\chi} = a + \left[\frac{\Sigma f_i u_i}{\Sigma f_i}\right] \times h$$

..... [where $u_i=rac{d_i}{h}$, where h is a common divisor of d_i]

MEDIAN: Median is a measure of central tendency which gives the value of the middle-most observation in the data.

(i) Ungrouped data: If n is odd \rightarrow Median = $\left(\frac{n+1}{2}\right)^{th}$ observation If n is even \rightarrow Median = $\frac{\left(\frac{n}{2}\right)^{th}}{2}$ observation $+\left(\frac{n}{2}+1\right)^{th}$ observation

Remember! For ungrouped data, first arrange the observations in ascending order or descending order.

(ii) Median (Grouped Data): Median =
$$l + \left(\frac{\frac{n}{2} - c.f.}{f}\right) \times h$$

...where[I = Lower limit of median class; n = Number of observations; f = Frequency of median class; c.f. = Cumulative frequency of preceding class; h = Class size]

(iii) Representing a cumulative frequency distribution graphically as a cumulative frequency curve, or an ogive of the less than type and of the more than type. The median of grouped data can be obtained graphically as the x-coordinate of the point of intersection of the two ogives for this data.

Mode:

(i) Ungrouped Data: The value of the observation having maximum frequency is the mode.(ii) Grouped Data:

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

...where[I = Lower limit of modal class; f_1 = Frequency of modal class; f_0 = Frequency of the class preceding the modal class; f_2 = Frequency of the class succeeding the modal class; h = Size of class interval. c.f. = Cumulative frequency of preceding class; h = Class size]

Mode = 3 Median - 2 Mean Median = $\frac{Mode+2Mean}{3}$ Mean = $\frac{3Median-Mode}{2}$