CBSE Class 10 Maths Notes Chapter 13 Statistics

MEAN (AVERAGE): Mean [Ungrouped Data] - Mean of n observations, $x_{1}, x_{2}, x_{3} \ldots x_{n}$, is

$$
\bar{X}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}=\frac{1}{n} \sum x \quad \therefore \quad \bar{X}=\frac{\sum x}{n}
$$

MEAN [Grouped Data]: The mean for grouped data can be found by the following three methods:
(i) Direct Mean Method:

$$
\bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}
$$

Class Mark $=$| Upper | Class | Limit + Lower | Class | Limit |
| :--- | :--- | :---: | :---: | :---: |

Note: Frequency of a class is centred at its mid-point called class mark.
(ii) Assumed Mean Method: In this, an arbitrary mean 'a' is chosen which is called, 'assumed mean', somewhere in the middle of all the values of x.
$\overline{\mathrm{X}}=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$
..[where $\left.d_{i}=\left(x_{i}-a\right)\right]$
(iii) Step Deviation Method:

$$
\bar{X}=a+\left[\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right] \times h
$$

..... [where $u_{i}=\frac{d_{i}}{h}$, where h is a common divisor of d_{i}]

MEDIAN: Median is a measure of central tendency which gives the value of the middle-most observation in the data.
(i) Ungrouped data: If n is odd \rightarrow Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ observation If n is even \rightarrow Median $=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { observation }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }}{2}$
Remember! For ungrouped data, first arrange the observations in ascending order or descending order.
(ii) Median (Grouped Data): Median $=l+\left(\frac{\frac{n}{2}-c . f}{f}\right) \times h$
...where[I = Lower limit of median class; $\mathrm{n}=$ Number of observations; $\mathrm{f}=$ Frequency of median class; c.f. = Cumulative frequency of preceding class; $\mathrm{h}=$ Class size]
(iii) Representing a cumulative frequency distribution graphically as a cumulative frequency curve, or an ogive of the less than type and of the more than type. The median of grouped data can be obtained graphically as the x-coordinate of the point of intersection of the two ogives for this data.

Mode:
(i) Ungrouped Data: The value of the observation having maximum frequency is the mode.
(ii) Grouped Data:

$$
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h
$$

...where[l = Lower limit of modal class; $f_{1}=$ Frequency of modal class; $f_{0}=$ Frequency of the class preceding the modal class; $f_{2}=$ Frequency of the class succeeding the modal class; $h=$ Size of class interval. c.f. $=$ Cumulative frequency of preceding class; $\mathrm{h}=$ Class size]

Mode $=3$ Median -2 Mean
Median $=\frac{\text { Mode }+2 \text { Mean }}{3}$
Mean $=\frac{3 \text { Median }- \text { Mode }}{2}$

