CBSE Class 11 Maths Notes Chapter 11 Introduction to Three Dimensional Geometry

Coordinate Axes

In three dimensions, the coordinate axes of a rectangular cartesian coordinate system are three mutually perpendicular lines. These axes are called the X, Y and Z axes.

Coordinate Planes

The three planes determined by the pair of axes are the coordinate planes. These planes are called $X Y, Y Z$ and $Z X$ plane and they divide the space into eight regions known as octants.

Coordinates of a Point in Space

The coordinates of a point in the space are the perpendicular distances from P on three mutually perpendicular coordinate planes $Y Z, Z X$, and $X Y$ respectively. The coordinates of a point P are written in the form of triplet like ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
The coordinates of any point on

- X-axis is of the form ($x, 0,0$)
- Y-axis is of the form $(0, y, 0)$
- Z-axis is of the form $(0,0, z)$
- XY-plane are of the form $(x, y, 0)$
- YZ-plane is of the form $(0, y, z)$
- ZX-plane are of the form $(x, 0, z)$

Distance Formula

The distance between two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The distance of a point $P(x, y, z)$ from the origin $O(0,0,0)$ is given by

$$
\mathrm{OP}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Section Formula

The coordinates of the point R which divides the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ internally or externally in the ratio $m: n$ are given by
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$ and
$\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)$ respectively.

The coordinates of the mid-point of the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$.

The coordinates of the centroid of the triangle, whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$.

