CBSE Class 11 Maths Notes Chapter 4 Complex Numbers and Quadratic Equations

Imaginary Numbers

The square root of a negative real number is called an imaginary number, e.g. $\sqrt{-2}$, $\sqrt{-5}$ etc. The quantity $\sqrt{-1}$ is an imaginary unit and it is denoted by 'i' called lota.

Integral Power of IOTA (i)

i = $\sqrt{-1}$, i² = -1, i³ = -i, i⁴ = 1 So, i⁴ⁿ⁺¹ = i, i⁴ⁿ⁺² = -1, i⁴ⁿ⁺³ = -i, i⁴ⁿ = 1

Note:

• For any two real numbers a and b, the result $\sqrt{a} \times \sqrt{b}$: \sqrt{ab} is true only, when atleast one of the given numbers i.e. either zero or positive.

√-a × √-b ≠ √ab

So, i² = √-1 × √-1 ≠ 1

- 'i' is neither positive, zero nor negative.
- $i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0$

Complex Number

A number of the form x + iy, where x and y are real numbers, is called a complex number, x is called real part and y is called imaginary part of the complex number i.e. Re(Z) = x and Im(Z) = y.

Purely Real and Purely Imaginary Complex Number

A complex number Z = x + iy is a purely real if its imaginary part is 0, i.e. Im(z) = 0 and purely imaginary if its real part is 0 i.e. Re (z) = 0.

Equality of Complex Number

Two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are equal, iff $x_1 = x_2$ and $y_1 = y_2$ i.e. $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$

Note: Order relation "greater than" and "less than" are not defined for complex number.

Algebra of Complex Numbers

Addition of complex numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers, then their sum defined as $z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$

Properties of Addition

- Commutative: $z_1 + z_2 = z_2 + z_1$
- Associative: $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$
- Additive identity z + 0 = z = 0 + z
 Here, 0 is additive identity.

Subtraction of complex numbers

Let $z_1 = (x_1 + iy_1)$ and $z_2 = (x_2 + iy_2)$ be any two complex numbers, then their difference is defined as $z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2)$

Multiplication of complex numbers

Let $z_1 = (x_1 + iy_1)$ and $z_2 = (x_2 + iy_2)$ be any two complex numbers, then their multiplication is defined as $z_1z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$

Properties of Multiplication

- Commutative: $z_1z_2 = z_2z_1$
- Associative: $z_1(z_2z_3) = (z_1z_2)z_3$
- Multiplicative identity: z . 1 = z = 1 . z

Here, 1 is multiplicative identity of an element z.

- Multiplicative inverse: For every non-zero complex number z, there exists a complex number z_1 such that z. $z_1 = 1 = z_1 \cdot z$
- Distributive law: $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$

Division of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers, then their division is defined as

$$\frac{Z_1}{Z_2} = \frac{X_1 + iy_1}{X_2 + iy_2} = \frac{(X_1X_2 + y_1y_2) + i(X_2y_1 - X_1y_2)}{X_2^2 + y_2^2}$$

$$Z_1 \neq 0.$$

where,

Conjugate of Complex Number

Let z = x + iy, if 'i' is replaced by (-i), then said to be conjugate of the complex number z and it is denoted by \overline{z} , i.e. $\overline{z} = x - iy$

Properties of Conjugate

(i)
$$\overline{(\overline{z})} = z$$

(ii) $z + \overline{z} = 2 \operatorname{Re}(z), z - \overline{z} = 2i \operatorname{Im}(z)$
(iii) $z = \overline{z}$, if z is purely real
(iv) $z + \overline{z} = 0 \Leftrightarrow z$ is purely imaginary
(v) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
(vi) $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
(vii) $\overline{(z_1 - z_2)} = \overline{z_1} - \overline{z_2}$
(viii) $\overline{(\frac{z_1}{z_2})} = \frac{\overline{z_1}}{\overline{z_2}}, \overline{z_2} \neq 0$
(ix) $z \cdot \overline{z} = \{\operatorname{Re}(z)\}^2 + \{\operatorname{Im}(z)\}^2$
(x) $z_1 \overline{z_2} \pm \overline{z_1} z_2 = 2 \operatorname{Re}(\overline{z_1} z_2) = 2 \operatorname{Re}(z_1 \overline{z_2})$
(xi) If $z = f(z_1)$, then $\overline{z} = f(\overline{z_1})$
(xii) $(\overline{z})^n = (\overline{z}^n)$

Modulus of a Complex Number

Let z = x + iy be a complex number. Then, the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute values) of z and it is denoted by |z| i.e. $|z| = \sqrt{x^2 + y^2}$ It represents a distance of z from origin in the set of complex number c, the order relation is not defined i.e. $z_1 > z_2$ or $z_1 < z_2$ has no meaning but $|z_1| > |z_2|$ or $|z_1| < |z_2|$ has got its meaning, since $|z_1|$ and $|z_2|$ are real numbers.

Properties of Modulus of a Complex number

(i) $|z| \ge 0$ (ii) |f||z| = 0, then z = 0 i.e. Re (z) = 0 = Im(z)(iii) $-|z| \le \text{Re}(z) \le |z|$ and $-|z| \le \text{Im}(z) \le |z|$ (iv) $|z| = |\overline{z}| = |-z| = |-\overline{z}|$ (v) $z \cdot \overline{z} = |z|^2$

(vi)
$$|z_1z_2| = |z_1| |z_2|$$

(vii) $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, z_2 \neq 0$
(viii) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z}_2)$
(ix) $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1\overline{z}_2)$
(x) $|z_1 + z_2| \leq |z_1| + |z_2|$
(xi) $|z_1 - z_2| \geq |z_1| - |z_2|$
(xii) $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$
In particular,
 $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
(xiii) $|z^n| = |z|^n$
(xiv) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 \Leftrightarrow \frac{z_1}{z_2}$ is purely imaginary.

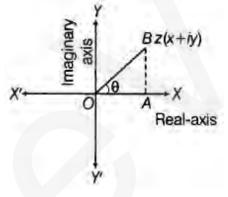
Argand Plane

Any complex number z = x + iy can be represented geometrically by a point (x, y) in a plane, called argand plane or gaussian plane. A purely number x, i.e. (x + 0i) is represented by the point (x, 0) on X-axis. Therefore, X-axis is called real axis. A purely imaginary number iy i.e. (0 + iy) is represented by the point (0, y) on the yaxis. Therefore, the y-axis is called the imaginary axis.

Argument of a complex Number

The angle made by line joining point z to the origin, with the positive direction of X-axis in an anti-clockwise sense is called argument or amplitude of complex number. It is denoted by the symbol arg(z) or amp(z).





Argument of z is not unique, general value of the argument of z is $2n\pi + \theta$, but arg(0) is not defined. The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the amplitude or principal argument.

Principal Value of Argument

- if x > 0 and y > 0, then $arg(z) = \theta$
- if x < 0 and y > 0, then $arg(z) = \pi \theta$
- if x < 0 and y < 0, then $\arg(z) = -(\pi \theta)$
- if x > 0 and y < 0, then $arg(z) = -\theta$

Polar Form of a Complex Number

If z = x + iy is a complex number, then z can be written as $z = |z| (\cos \theta + i\sin \theta)$, where $\theta = \arg(z)$. This is called polar form. If the general value of the argument is θ , then the polar form of z is $z = |z| [\cos (2n\pi + \theta) + i\sin(2n\pi + \theta)]$, where n is an integer.

Square Root of a Complex Number

If
$$z = x + iy$$
, then
 $\sqrt{z} = \sqrt{x + iy}$
 $= \pm \left[\sqrt{\frac{z|+x}{2}} + i\sqrt{\frac{|z|-x}{2}}\right]$, for $y > 0$
 $= \pm \left[\sqrt{\frac{|z|+x}{2}} - i\sqrt{\frac{|z|-x}{2}}\right]$, for $y < 0$

Solution of a Quadratic Equation

The equation $ax^2 + bx + c = 0$, where a, b and c are numbers (real or complex, $a \neq 0$) is called the general quadratic equation in variable x. The values of the variable satisfying the given equation are called roots of the equation.

The quadratic equation $ax^2 + bx + c = 0$ with real coefficients has two roots given by $\frac{-b+\sqrt{D}}{2a}$ and $\frac{-b-\sqrt{D}}{2a}$, where D = b² - 4ac, called the discriminant of the equation.

Note:

(i) When D = 0, roots ore real and equal. When D > 0 roots are real and unequal. Further If a,b, $c \in Q$ and D is perfect square, then the roots of quadratic equation are real and unequal and if a, b, $c \in Q$ and D is not perfect square, then the roots are irrational and occur in pair. When D < 0, roots of the equation are non real (or complex).

(ii) Let α , β be the roots of quadratic equation $ax^2 + bx + c = 0$, then sum of roots $\alpha + \beta = \frac{-b}{a}$ and the product of roots $\alpha\beta = \frac{c}{a}$.