CBSE Class 11 Maths Notes Chapter 4 Complex Numbers and Quadratic Equations

Imaginary Numbers

The square root of a negative real number is called an imaginary number, e.g. $\downarrow-2, ~ \sqrt{ }-5$ etc.
The quantity $\sqrt{ }$ - 1 is an imaginary unit and it is denoted by ' i ' called lota.

Integral Power of IOTA (i)

$i=\sqrt{ }-1, i^{2}=-1, i^{3}=-i, i^{4}=1$
So, $i^{4 n+1}=i, i^{4 n+2}=-1, i^{4 n+3}=-i, i^{4 n}=1$

Note:

- For any two real numbers a and b, the result $\sqrt{ } a \times \sqrt{ } b: \sqrt{ }$ ab is true only, when atleast one of the given numbers i.e. either zero or positive.
$\sqrt{ }-\mathrm{a} \times \sqrt{ }$ - $\mathrm{F} \neq \sqrt{ } \mathrm{ab}$
So, $i^{2}=\sqrt{ }-1 \times \sqrt{ }-1 \neq 1$
- ' i ' is neither positive, zero nor negative.
- $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0$

Complex Number

A number of the form $x+i y$, where x and y are real numbers, is called a complex number, x is called real part and y is called imaginary part of the complex number i.e. $\operatorname{Re}(Z)=x$ and $\operatorname{Im}(Z)=y$.

Purely Real and Purely Imaginary Complex Number

A complex number $Z=x+$ iy is a purely real if its imaginary part is 0 , i.e. $\operatorname{Im}(z)=0$ and purely imaginary if its real part is 0 i.e. $\operatorname{Re}(z)=0$.

Equality of Complex Number

Two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are equal, iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$ i.e. $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$
Note: Order relation "greater than" and "less than" are not defined for complex number.

Algebra of Complex Numbers

Addition of complex numbers

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be any two complex numbers, then their sum defined as
$z_{1}+z_{2}=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$

Properties of Addition

- Commutative: $z_{1}+z_{2}=z_{2}+z_{1}$
- Associative: $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$
- Additive identity $z+0=z=0+z$ Here, 0 is additive identity.

Subtraction of complex numbers

Let $z_{1}=\left(x_{1}+i y_{1}\right)$ and $z_{2}=\left(x_{2}+i y_{2}\right)$ be any two complex numbers, then their difference is defined as $z_{1}-z_{2}=\left(x_{1}+i y_{1}\right)-\left(x_{2}+i y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)$

Multiplication of complex numbers

Let $z_{1}=\left(x_{1}+i y_{1}\right)$ and $z_{2}=\left(x_{2}+i y_{2}\right)$ be any two complex numbers, then their multiplication is defined as $z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)$

Properties of Multiplication

- Commutative: $z_{1} z_{2}=z_{2} z_{1}$
- Associative: $z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3}$
- Multiplicative identity: z. $1=z=1$. z

Here, 1 is multiplicative identity of an element z.

- Multiplicative inverse: For every non-zero complex number z, there exists a complex number z_{1} such that $\mathrm{z} \cdot \mathrm{z}_{1}=1=\mathrm{z}_{1} \cdot \mathrm{z}$
- Distributive law: $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$

Division of Complex Numbers

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be any two complex numbers, then their division is defined as

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}
$$

Where, $\quad z_{2} \neq 0$.

Conjugate of Complex Number

Let $z=x+i y$, if ' i ' is replaced by $(-i)$, then said to be conjugate of the complex number z and it is denoted by \bar{z}, i.e. $\bar{z}=x-$ iy

Properties of Conjugate

(i) $\overline{(\bar{z})}=z$
(ii) $z+\bar{z}=2 \operatorname{Re}(z), z-\bar{z}=2 i \operatorname{Im}(z)$
(iii) $z=\bar{z}$, if z is purely real
(iv) $z+\bar{z}=0 \Leftrightarrow z$ is purely imaginary
(v) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
(vi) $z_{1}-z_{2}=\bar{z}_{1}-\bar{z}_{2}$
(vii) $\overline{z_{1} z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$
(viii) $\left(\frac{z_{1}}{z_{2}}\right)=\frac{\bar{z}_{1}}{\bar{z}_{2}}, \bar{z}_{2} \neq 0$
(ix) $z \cdot \bar{z}=\{\operatorname{Re}(z)\}^{2}+\{\operatorname{lm}(z)\}^{2}$
(x) $z_{1} \bar{z}_{2} \pm \bar{z}_{1} z_{2}=2 \operatorname{Re}\left(\bar{z}_{1} z_{2}\right)=2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(xi) If $z=f\left(z_{1}\right)$, then $\bar{z}=f\left(\bar{z}_{1}\right)$
(xii) $(\bar{z})^{n}=\left(\bar{z}^{n}\right)$

Modulus of a Complex Number

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ be a complex number. Then, the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute values) of z and it is denoted by $|z| i . e .|z|=\sqrt{x^{2}+y^{2}}$ It represents a distance of z from origin in the set of complex number c, the order relation is not defined i.e. $z_{1}>z_{2}$ or $z_{1}<z_{2}$ has no meaning but $\left|z_{1}\right|>\left|z_{2}\right|$ or $\left|z_{1}\right|<\left|z_{2}\right|$ has got its meaning, since $\left|z_{1}\right|$ and $\left|z_{2}\right|$ are real numbers.

Properties of Modulus of a Complex number

(i) $|z| \geq 0$
(ii) If $|z|=0$, then $z=0$ i.e. $\operatorname{Re}(z)=0=\operatorname{lm}(z)$
(iii) $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $-|z| \leq \operatorname{lm}(z) \leq|z|$
(iv) $|z|=|\bar{z}|=|-z|=|-\bar{z}|$
(v) $z \cdot \bar{z}=|z|^{2}$
(vi) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(vii) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, z_{2} \neq 0$
(viii) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(ix) $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(x) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(xi) $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
(xii) $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$

In particular,

$$
\left|z_{1}-z_{2}\right|^{2}+\left|z_{1}+z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

(xiii) $\left|z^{n}\right|=|z|^{n}$
(xiv) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \Leftrightarrow \frac{z_{1}}{z_{2}}$ is purely imaginary.

Argand Plane

Any complex number $z=x+i y$ can be represented geometrically by a point (x, y) in a plane, called argand plane or gaussian plane. A purely number x, i.e. $(x+0 i)$ is represented by the point $(x, 0)$ on X-axis. Therefore, X-axis is called real axis. A purely imaginary number iy i.e. $(0+i y)$ is represented by the point $(0, y)$ on the y axis. Therefore, the y-axis is called the imaginary axis.

Argument of a complex Number

The angle made by line joining point z to the origin, with the positive direction of X-axis in an anti-clockwise sense is called argument or amplitude of complex number. It is denoted by the symbol $\arg (z)$ or amp(z). $\arg (\mathrm{z})=\theta=\tan -1\left(\frac{y}{x}\right)$

Argument of z is not unique, general value of the argument of z is $2 n \pi+\theta$, but $\arg (0)$ is not defined. The unique value of θ such that $-\pi<\theta \leq \pi$ is called the principal value of the amplitude or principal argument.

Principal Value of Argument

- if $x>0$ and $y>0$, then $\arg (z)=\theta$
- if $x<0$ and $y>0$, then $\arg (z)=\pi-\theta$
- if $x<0$ and $y<0$, then $\arg (z)=-(\pi-\theta)$
- if $x>0$ and $y<0$, then $\arg (z)=-\theta$

Polar Form of a Complex Number

If $z=x+$ iy is a complex number, then z can be written as $z=|z|(\cos \theta+i \sin \theta)$, where $\theta=\arg (z)$. This is called polar form. If the general value of the argument is θ, then the polar form of z is $z=|z|[\cos (2 n \pi+\theta)+$ isin $(2 n \pi+\theta)]$, where n is an integer.

Square Root of a Complex Number

$$
\text { If } \begin{aligned}
z & =x+i y, \text { then } \\
\sqrt{z} & =\sqrt{x+i y} \\
& = \pm\left[\sqrt{\frac{z \mid+x}{2}}+i \sqrt{\frac{|z|-x}{2}}\right] \text {, for } y>0 \\
& = \pm\left[\sqrt{\frac{|z|+x}{2}}-i \sqrt{\frac{|z|-x}{2}}\right], \text { for } y<0
\end{aligned}
$$

Solution of a Quadratic Equation

The equation $a x^{2}+b x+c=0$, where a, b and c are numbers (real or complex, $a \neq 0$) is called the general quadratic equation in variable x. The values of the variable satisfying the given equation are called roots of the equation.

The quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ with real coefficients has two roots given by $\frac{-b+\sqrt{ } D}{2 a}$ and $\frac{-b-\sqrt{ } D}{2 a}$, where $D=b^{2}-4 a c$, called the discriminant of the equation.

Note:
(i) When $D=0$, roots ore real and equal. When $D>0$ roots are real and unequal. Further If $a, b, c \in Q$ and D is perfect square, then the roots of quadratic equation are real and unequal and if $a, b, c \in Q$ and D is not perfect square, then the roots are irrational and occur in pair. When $D<0$, roots of the equation are non real (or complex).
(ii) Let a, β be the roots of quadratic equation $a x^{2}+b x+c=0$, then sum of roots $a+\beta=\frac{-b}{a}$ and the product of roots $\alpha \beta=\frac{c}{a}$.

