CBSE Class 7 Maths Notes Chapter 11 Exponents and Powers

Exponents

We can write large numbers in a short form using exponents.
For example: $10,000=10 \times 10 \times 10 \times 10=10^{4}$
Here, ' 10 ' is called the base and ' 4 ' the exponent. The number 10^{4} is read as 10 raised to the power of 4 or simply as the fourth power of 10 .
10^{4} is called the exponential form of 10,000 .
$(1)^{\text {any natural number }}=1$
$(-1)^{\text {an odd natural number }}=-1$
$(-1)^{\text {an even natural number }}=+1$
$a^{m} \times a^{n}=a^{m+n}$, where m and n are whole numbers and $a(\neq 0)$ is an integer.
This formula can be used to write answers to above questions.

For any non-zero integer a,
$a^{m} \div a^{n}=a^{m-n}$ where m and n are whole numbers and $m>n$.
For any non-zero integer a,
$\left(a^{m}\right)^{n}=a^{m n}$ (where m and n are whole numbers)

For any non-zero integer a
$a^{m} \times b^{m}=(a b)^{m}$ (where m is any whole number)

$$
a^{m} \div b^{m}=\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}
$$

(where m is a whole number; a and b are any non-zero integers)
$a^{0}=1$ (for any non-zero integer a)
Any number (except 0) raised to the power (or exponent) 0 is 1 .

Decimal Number System

$$
\begin{aligned}
& 10,000=10^{4} \\
& 1000=10^{3} \\
& 100=10^{2} \\
& 10=10^{1} \\
& 1=10^{0}
\end{aligned}
$$

We can write the expansion of a number using powers of 10 in the exponent form.

Expressing Large Numbers in the Standard Form

Large numbers can be expressed conveniently using exponents. Such a number is said to be in standard form if it can be expressed as $k \times 10^{m}$, where $1 \leq, k<10$ and m is a natural number.

Note that, one less than the digit count (number of digits) to the left of the decimal point in a given number, is the exponent of 10 in the standard form.

For any rational number a and positive integer n, we define a^{n} as $a \times a \times a \times \ldots \ldots \times a$ (n times). a^{n} is known as the nth power of a and is read as 'a raised to the power n '. The rational a is called the base and n is called the exponent or power.
e.g. $10,000=10 \times 10 \times 10 \times 10=10^{4}$.

10 is the base and 4 is the exponent.

Reciprocal of $\left(\frac{a}{b}\right)^{m}=\frac{b^{m}}{a^{m}}=\left(\frac{b}{a}\right)^{m}$, so the reciprocal of $\left(\frac{a}{b}\right)^{m}$ is $\left(\frac{b}{a}\right)^{m}$.

Multiplying Powers with the Same Base: If a is any non-zero integer and whole numbers are m and n, then $a^{m} \times a^{n}=a^{m+n}$
e.g. $2^{4} \times 2^{2}$
$a=2, m=4, n=2$
$2^{4} \times 2^{2}=2^{4+2}=2^{6}$

Dividing Powers with the Same Base: If a is any non-zero integer and m, n are the whole number, then $a^{m} \div$ $a^{n}=a^{m-n}$
e.g. $2^{4} \div 2^{2}$
$a=2, m=4, n=2$
$2^{4} \div 2^{2}=2^{4-2}=2^{2}$

Taking Power of a Power: If a is any non-zero integer and m, n are whole numbers, $\left(a^{m}\right)^{n}=a^{m n}$ e.g. $\left(6^{2}\right)^{4}$
$a=6, m=2, n=4$
$\left(6^{2}\right)^{4}=(6)^{2 \times 4}=6^{8}$.

Multiplying Powers with the Same Exponents: If a, b are two non-zero integers and m is any whole number, then
$a^{m} \times b^{n}=(a \times b)^{m}$
e.g. $2^{3} \times 3^{3}$
$a=2, b=3, m=3$
$2^{3} \times 3^{3}=(2 \times 3)^{3}=6^{3}$.
Dividing Powers with the Same Exponents: If a, b are two non-zero integers and m is a whole number, then

$$
a^{m} \div b^{m}=\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}
$$

e.g. $\quad 2^{3} \div 3^{3}$

$$
a=2, b=3, m=3
$$

$$
2^{3} \div 3^{3}=\frac{2^{3}}{3^{3}}=\left(\frac{2}{3}\right)^{3}
$$

Numbers with Exponent Zero: If a be any non-zero integer, then, $\mathrm{a}^{0}=1$

$$
\text { e.g. } \frac{2^{5}}{2^{5}}=2^{5-5}=2^{0}=1
$$

Numbers with Negative Exponent: If a is any non-zero integer, then $\mathrm{a}^{-1}=\frac{1}{a}$
e.g. $2^{-5}=\frac{1}{2^{5}}$

In decimal number system, the exponents of 10 start from a maximum value and go on decreasing from the left to right upto 0 .
e.g. $45672=4 \times 10000+5 \times 1000+6 \times 100+7 \times 10+2 \times 1$
$=4 \times 10^{4}+5 \times 10^{3}+6 \times 10^{2}+7 \times 10^{1}+2 \times 10^{0}$
It is called expanded form of a number.

Any number can be expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power of 10 . Such a form of a number is called its standard form.
e.g. $56782=5.6782 \times 10000=5.6782 \times 10^{4}$.

It is the standard form of 56782 .

