CBSE Class 9 Maths Notes Chapter 10 Heron's Formula

1. Triangle: A plane figure bounded by three line segments is called a triangle.

In $\triangle A B C$ has
(i) three vertices, namely A, B and C .
(ii) three sides, namely $A B, B C$ and $C A$.
(iii) three angles, namely $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.

2. Types of Triangle on the Basis of Sides
(i) Equilateral triangle: A triangle having all sides equal is called an equilateral triangle.

In equilateral $\triangle A B C$,
i.e., $A B=B C=C A$
(ii) Isosceles triangle: A triangle having two sides equal is called an isosceles triangle.

In isosceles $\triangle A B C$,
i.e., $A B=A C$
(iii) Scalene triangle: A triangle in which all the sides are of different lengths is called a scalene triangle.

In scalene $\triangle A B C$,
i.e., $A B \neq B C \neq C A$
3. The perimeter of a Triangle: The sum of the lengths of three sides of a triangle is called its perimeter. Let, $A B=c, B C=a, C A=b$
i.e., Perimeter of $\triangle A B C, 2 s=a+b+c$
4. Area of a Triangle: The measure of the surface enclosed by the boundary of the triangle is called its area.

Area of triangle $=\frac{1}{2} \times$ Base \times Height
Area of right angled triangle $=\frac{1}{2} \times$ Base \times Perpendicular
5. Area of a Triangle (Heron's Formula): If a triangle has a, b and c as sides, then the area of a triangle by Heron's formula $=\sqrt{s(s-a)(s-b)(s-c)}$
where, s (semi-perimeter) $=\frac{a+b+c}{2}$
Note: This formula is highly applicable in the case when we don't have the exact idea about height.
6. Application of Heron's Formula in Finding Areas of Quadrilaterals: Let ABCD he a quadrilateral to find the area of a quadrilateral we need to divide the quadrilateral in triangular parts.

Area of quadrilateral $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A D C$

