CBSE Class 10 Maths Notes Chapter 3 Pair of Linear equations in Two Variables

- For any linear equation, each solution (x, y) corresponds to a point on the line. General form is given by $a x+b y+c=0$.
- The graph of a linear equation is a straight line.
- Two linear equations in the same two variables are called a pair of linear equations in two variables.

The most general form of a pair of linear equations is: $a_{1} x+b_{1} y+c_{1}=0 ; a_{2} x+b_{2} y+c_{2}=0$ where $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}$ and c_{2} are real numbers, such that $a_{1}^{2}+b_{1}^{2} \neq 0, a_{2}^{2}+b_{2}^{2} \neq 0$.

- A pair of values of variables ' x ' and ' y ' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.
- A pair of linear equations in two variables can be represented and solved, by
(i) Graphical method
(ii) Algebraic method
(i) Graphical method. The graph of a pair of linear equations in two variables is presented by two lines.
(ii) Algebraic methods. Following are the methods for finding the solutions(s) of a pair of linear equations:

1. Substitution method
2. Elimination method
3. Cross-multiplication method.

- There are several situations which can be mathematically represented by two equations that are not linear to start with. But we allow them so that they are reduced to a pair of linear equations.
- Consistent system. A system of linear equations is said to be consistent if it has at least one solution.
- Inconsistent system. A system of linear equations is said to be inconsistent if it has no solution.

CONDITIONS FOR CONSISTENCY

Let the two equations be:
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
Then,

Relationship between coeff. or the pair of equations	Graph	Number of Solutions	Consistency of System
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	Intersecting lines	Unique solution	Consistent
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$	Parallel lines	No solution	Inconsistent
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$	Co-incident lines	Infinite solutions	Consistent

