CBSE Class 10 Maths Notes Chapter 3 Pair of Linear equations in Two Variables

- For any linear equation, each solution (x, y) corresponds to a point on the line. General form is given by ax + by + c = 0.
- The graph of a linear equation is a straight line.
- Two linear equations in the same two variables are called a pair of linear equations in two variables. The most general form of a pair of linear equations is: a₁x + b₁y + c₁ = 0; a₂x + b₂y + c₂ = 0 where a₁, a₂, b₁, b₂, c₁ and c₂ are real numbers, such that a₁² + b₁² ≠ 0, a₂² + b₂² ≠ 0.
- A pair of values of variables 'x' and 'y' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.
- A pair of linear equations in two variables can be represented and solved, by
 - (i) Graphical method
 - (ii) Algebraic method

(i) Graphical method. The graph of a pair of linear equations in two variables is presented by two lines.(ii) Algebraic methods. Following are the methods for finding the solutions(s) of a pair of linear equations:

- 1. Substitution method
- 2. Elimination method
- 3. Cross-multiplication method.
- There are several situations which can be mathematically represented by two equations that are not linear to start with. But we allow them so that they are reduced to a pair of linear equations.
- **Consistent system.** A system of linear equations is said to be consistent if it has at least one solution.
- Inconsistent system. A system of linear equations is said to be inconsistent if it has no solution.

CONDITIONS FOR CONSISTENCY

Let the two equations be: $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$ Then,

Relationship between coeff. or the pair of equations	Graph	Number of Solutions	Consistency of System
$rac{a_1}{a_2} eq rac{b_1}{b_2}$	Intersecting lines	Unique solution	Consistent
$rac{a_1}{a_2}=rac{b_1}{b_2} eq rac{c_1}{c_2}$	Parallel lines	No solution	Inconsistent
$rac{a_1}{a_2} = rac{b_1}{b_2} = rac{c_1}{c_2}$	Co-incident lines	Infinite solutions	Consistent