CBSE Class 10 Maths Notes Chapter 2 Polynomials

- "Polynomial" comes from the word 'Poly' (Meaning Many) and 'nomial' (in this case meaning Term)-so it means many terms.
- A polynomial is made up of terms that are only added, subtracted or multiplied.
- A quadratic polynomial in x with real coefficients is of the form $a x^{2}+b x+c$, where a, b, c are real numbers with a $\neq 0$.
- Degree - The highest exponent of the variable in the polynomial is called the degree of polynomial. Example: $3 x^{3}+4$, here degree $=3$.
- Polynomials of degrees 1,2 and 3 are called linear, quadratic and cubic polynomial respectively.
- A polynomial can have terms which have Constants like 3,-20, etc., Variables like x and y and Exponents like 2 in y^{2}.
- These can be combined using addition, subtraction and multiplication but NOT DIVISION.
- The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $y=$ $p(x)$ intersects the x-axis.

If a and β are the zeroes of the quadratic polynomial $a x^{2}+b x+c$, then
sum of zeros, $\alpha+\beta=\frac{-b}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}$
product of zeros, $\alpha \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient }}$ of x^{2}
If a, β, y are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d=0$, then
$\alpha+\beta+\gamma=\frac{-b}{a}=\frac{- \text { coefficient }}{}$ of x^{2}
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { coefficient }}{\text { cofficient }}$ of $\quad x^{3}$
$\alpha \beta \gamma=\frac{-d}{a}=\frac{- \text { constant term }}{\text { coefficient } \text { of } x^{3}}$
Zeroes (α, β, y) follow the rules of algebraic identities, i.e.,
$(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$\therefore\left(\alpha^{2}+\beta^{2}\right)=(\alpha+\beta)^{2}-2 \alpha \beta$

DIVISION ALGORITHM:

If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then
$p(x)=g(x) \times q(x)+r(x)$
Dividend $=$ Divisor x Quotient + Remainder

Remember this!

- If $r(x)=0$, then $g(x)$ is a factor of $p(x)$.
- If $r(x) \neq 0$, then we can subtract $r(x)$ from $p(x)$ and then the new polynomial formed is a factor of $g(x)$ and $q(x)$.

