CBSE Class 10 Maths Notes Chapter 4 Quadratic Equations

A quadratic polynomial of the form $ax^2 + bx + c$, where $a \neq 0$ and a, b, c are real numbers, is called a quadratic equation

when $ax^2 + bx + c = 0$.

Here a and b are the coefficients of x^2 and x respectively and 'c' is a constant term.

Any value is a solution of a quadratic equation if and only if it satisfies the quadratic equation.

Quadratic formula: The roots, i.e., α and β of a quadratic equation $ax^2 + bx + c = 0$ are given by $\frac{-b\pm\sqrt{D}}{2a}$ or $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ provided $b^2 - 4ac \ge 0$.

Here, the value $b^2 - 4ac$ is known as the discriminant and is generally denoted by D. 'D' helps us to determine the nature of roots for a given quadratic equation. Thus $D = b^2 - 4ac$.

The rules are:

- 1. If D = 0 \Rightarrow The roots are Real and Equal.
- 2. If D > 0 \Rightarrow The two roots are Real and Unequal.
- 3. If D < 0 \Rightarrow No Real roots exist.

If α and β are the roots of the quadratic equation, then Quadratic equation is $x^2 - (\alpha + \beta) x + \alpha\beta = 0$ Or $x^2 - (sum of roots) x + product of roots = 0$

where, Sum of roots $(\alpha + \beta) = \frac{-coefficient}{coefficient} \quad of \quad x^2 = \frac{-b}{a}$

Product of roots $(\alpha \times \beta) = \frac{coefficient \quad term}{coefficient \quad of \quad x^2} = \frac{c}{a}$