CBSE Class 10 Maths Notes Chapter 1 Real Numbers

R = Real Numbers:

All rational and irrational numbers are called real numbers.

I = Integers:

All numbers from (...-3, -2, -1, 0, 1, 2, 3...) are called integers.

Q = Rational Numbers:

Real numbers of the form $\frac{p}{q}$, q \neq 0, p, q \in I are rational numbers.

- All integers can be expressed as rational, for example, $5 = \frac{5}{1}$
- Decimal expansion of rational numbers terminating or non-terminating recurring.

Q' = Irrational Numbers:

Real numbers which cannot be expressed in the form $\frac{p}{q}$ and whose decimal expansions are non-terminating and non-recurring.

• Roots of primes like $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ etc. are irrational

N = Natural Numbers:

Counting numbers are called natural numbers. N = {1, 2, 3, ...}

W = Whole Numbers:

Zero along with all natural numbers are together called whole numbers. {0, 1, 2, 3,...}

Even Numbers:

Natural numbers of the form 2n are called even numbers. (2, 4, 6, ...}

Odd Numbers:

Natural numbers of the form 2n -1 are called odd numbers. {1, 3, 5, ...}

• Why can't we write the form as 2n+1?

Remember this!

- All Natural Numbers are whole numbers.
- All Whole Numbers are Integers.
- All Integers are Rational Numbers.
- All Rational Numbers are Real Numbers.

Prime Numbers:

The natural numbers greater than 1 which are divisible by 1 and the number itself are called prime numbers, Prime numbers have two factors i.e., 1 and the number itself For example, 2, 3, 5, 7 & 11 etc.

• 1 is not a prime number as it has only one factor.

Composite Numbers:

The natural numbers which are divisible by 1, itself and any other number or numbers are called composite numbers. For example, 4, 6, 8, 9, 10 etc.

Note: 1 is neither prime nor a composite number.

I. Euclid's Division lemma

Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, $0 \le r \le b$.

Notice this. Each time 'r' is less than b. Each 'q' and 'r' is unique.

vv	nacc	ives	unis i	nean
	a	ь	q	r 3
	18 :	= 2 >	< 9 +	0
	18 :	= 3 >	< 5 +	3
	18	= 5 >	< 3 +	3 '
2	18	= 7 >	< 2 +	4
8	18 =	: 11	×1+	7
2				•

II. Application of lemma

Euclid's Division lemma is used to find HCF of two positive integers. Example: Find HCF of 56 and 72 ? Steps:

- Apply lemma to 56 and 72.
- Take bigger number and locate 'b' and 'r'. $72 = 56 \times 1 + 16$
- Since $16 \neq 0$, consider 56 as the new dividend and 16 as the new divisor. $56 = 16 \times 3 + 8$
- Again, $8 \neq 0$, consider 16 as new dividend and 8 as new divisor. $16 = 8 \times 2 + 0$

Since remainder is zero, divisor (8) is HCF.

Although Euclid's Division lemma is stated for only positive integers, it can be extended for all integers except zero, i.e., $b \neq 0$.

III. Constructing a factor tree

Steps

• Write the number as a product of prime number and a composite number Example:

Factorize 48

- Repeat the process till all the primes are obtained
 - : Prime factorization of 48 = $2^4 \times 3$

IV. Fundamental theorem of Arithmetic

Every composite number can be expressed as a product of primes, and this expression is unique, apart from the order in which they appear.

Applications:

- 1. To locate HCF and LCM of two or more positive integers.
- 2. To prove irrationality of numbers.
- 3. To determine the nature of the decimal expansion of rational numbers.

1. Algorithm to locate HCF and LCM of two or more positive integers:

Step I:

Factorize each of the given positive integers and express them as a product of powers of primes in ascending order of magnitude of primes.

Step II:

To find HCF, identify common prime factor and find the least powers and multiply them to get HCF. **Step III:**

To find LCM, find the greatest exponent and then multiply them to get the LCM.

2. To prove Irrationality of numbers:

- The sum or difference of a rational and an irrational number is irrational.
- The product or quotient of a non-zero rational number and an irrational number is irrational.

3. To determine the nature of the decimal expansion of rational numbers:

- Let x = p/q, p and q are co-primes, be a rational number whose decimal expansion terminates. Then the prime factorization of'q' is of the form $2^{m}5^{n}$, m and n are non-negative integers.
- Let x = p/q be a rational number such that the prime factorization of 'q' is not of the form $2^m 5^n$, 'm' and 'n' being non-negative integers, then x has a non-terminating repeating decimal expansion.

Alert!

- 2^3 can be written as: $2^3 = 2^3 5^0$
- 5^2 can be written as: $5^2 = 2^0 5^2$