Answers to Some Questions in Exercises

UNIT 1

- **1.4** 16.23 M **1.6** 157.8 mL
 - **1.8** 17.95 m and 9.10 M
 - **1.15** 40.907 g mol⁻¹
 - **1.17** 12.08 *k*Pa
 - 1.17 12.00 APa
 - 1.19 23 g mol⁻¹, 3.53 kPa
 1.21 A = 25.58 u and B = 42.64 u
 - **1.24** KCl, $CH_{2}OH$, $CH_{3}CN$, Cyclohexane
 - **1.25** Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol
 - **1.26** 5 m
 - **1.28** 1.424%
 - **1.30** 4.575 g
 - **1.33** i = 1.0753, $K_a = 3.07 \times 10^{-3}$
 - **1.35** 178×10⁻⁵
 - **1.38** 0.6 and 0.4
 - **1.40** 0.03 mol of CaCl₂

- **1.5** 0.617 m, 0.01 and 0.99, 0.67
- **1.7** 33.5%
- **1.9** 1.5×10^{-3} %, 1.25×10^{-4} m
- 1.16 73.58 *k*Pa
- **1.18** 10 g
- **1.20** 269.07 K
- **1.22** 0.061 M
- **1.27** 2.45x10⁻⁸ M
- 1.29 3.2 g of water
- **1.32** 0.65⁰
- **1.34** 17.44 mm Hg
- 1.36 280.7 torr, 32 torr
- **1.39** $x(O_2) 4.6 \times 10^{-5}, x(N_2) 9.22 \times 10^{-5}$
- **1.41** 5.27x10⁻³ atm.

UNIT 2

- **2.4** (i) $E^{\circ} = 0.34$ V, $\Delta_{\rm r}G^{\circ} = -196.86$ kJ mol⁻¹, $K = 3.124 \times 10^{34}$ (ii) $E^{\circ} = 0.03$ V, $\Delta_{\rm r}G^{\circ} = -2.895$ kJ mol⁻¹, K = 3.2**2.5** (i) 2.68 V, (ii) 0.53 V, (iii) 0.08 V, (iv) -1.298 V
- **2.6** 1.56 V
- **2.8** 124.0 S cm² mol⁻¹
- **2.9** 0.219 cm^{-1}
- **2.11** 1.85×10^{-5}
- **2.12** 3F, 2F, 5F
- **2.13** 1F, 4.44F
- **2.14** 2F, 1F
- **2.15** 1.8258g
- **2.16** 14.40 min, Copper 0.427g, Zinc 0.437 g

UNIT 3

3.2	(i) $8.0 \times 10^{-9} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$; 3.89×1	$0^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$
3.4	$bar^{-1/2}s^{-1}$	
3.6	(i) 4 times	(ii) ¼ times
3.8	(i) $4.67 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{s}^{-1}$	(ii) $1.98 \times 10^{-2} \text{ s}^{-1}$
3.9	(i) rate = $k[A][B]^2$	(ii) 9 times

- **3.10** Orders with respect to A is 1.5 and order with respect to B is zero.
- **3.11** rate law = $k[A][B]^2$; rate constant = 6.0 $M^{-2}min^{-1}$

3.13	(i) 3.47×10^{-3} seconds	(ii) O.	.35 minutes	(iii) 0.173 years
3.14	1845 years	3.16	$4.6 \times 10^{-2} \text{ s}$	
3.17	0.7814 µg and 0.227 µg.	3.19	77.7 minutes	
3.20	$2.20 \times 10^{-3} \text{ s}^{-1}$	3.21	$2.23 \times 10^{-3} \text{ s}^{-1}$,	$7.8 \times 10^{-4} \text{ atm s}^{-1}$
3.23	$3.9 \times 10^{12} \text{ s}^{-1}$	3.24	0.135 M	
3.25	0.158 M	3.26	232.79 kJ mol	-1
3.27	239.339 kJ mol ⁻¹	3.28	24°C	
3.29	$E_a = 76.750 \text{ kJ mol}^{-1}, \ k = 0.9965 \times 10^{-2}$	\mathbf{s}^{-1}		
3.30	52.8 kJ mol ⁻¹			

UNIT 4

- **4.2** It is because Mn^{2+} has $3d^5$ configuration which has extra stability.
- **4.5** Stable oxidation states.
 - 3d³ (Vanadium): (+2), +3, +4, and +5
 - 3*d*⁵ (Chromium): +3, +4, +6
 - 3d⁵ (Manganese): +2, +4, +6, +7

 $3d^{8}$ (Nickel): +2, +3 (in complexes)

- $3d^4$ There is no d^4 configuration in the ground state.
- **4.6** Vanadate VO_3^- , chromate CrO_4^{2-} , permanganate MnO_4^-
- **4.10** +3 is the common oxidation state of the lanthanoids

In addition to +3, oxidation states +2 and +4 are also exhibited by some of the lanthanoids.

- **4.13** In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as +2, +3, +4, +5, +6, +7. In the nontransition elements the variation is selective, always differing by 2, e.g. +2, +4, or +3, +5 or +4, +6 etc.
- **4.18** Except Sc^{3+} , all others will be coloured in aqueous solution because of incompletely filled 3d-orbitals, will give rise to d-d transitions.
- **4.21** (i) Cr^{2+} is reducing as it involves change from d^4 to d^3 , the latter is more stable configuration

 $(t_{2\sigma}^3)$ Mn(III) to Mn(II) is from $3d^4$ to $3d^5$ again $3d^5$ is an extra stable configuration.

- (ii) Due to CFSE, which more than compensates the 3^{rd} IE.
- (iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .
- **4.23** Copper, because with +1 oxidation state an extra stable configuration, $3d^{10}$ results.

4.24 Unpaired electrons $Mn^{3+} = 4$, $Cr^{3+} = 3$, $V^{3+} = 2$, $Ti^{3+} = 1$. Most stable Cr^{3+}

- 4.28 Second part 59, 95, 102.
- **4.30** Lawrencium, 103, +3

4.36 Ti²⁺ = 2, V²⁺ = 3, Cr³⁺ = 3, Mn²⁺ = 5, Fe²⁺ = 6, Fe³⁺ = 5, CO²⁺ = 7, Ni²⁺ = 8, Cu²⁺ = 9

4.38 $M\sqrt{n(n+2)} = 2.2, n \approx 1, d^2 \text{ sp}^3, \text{ CN}^- \text{ strong ligand}$

= 5.3, $n \approx 4$, sp³, d^2 , H₂O weak ligand

= 5.9,
$$n \approx 5$$
, sp^3 , Cl^- weak ligand.

155

UNIT 5

5.5	(i) + 3	(ii) +3	(iii)	+2	(iv)	+3 (v) +3				
5.6	(i) [Zn(OH) ₄] ²⁻	(ii) K ₂ [PdCl ₄]	(iii)	[Pt(NH ₃) ₂ Cl ₂]	(iv)	K ₂ [Ni(CN) ₄]				
	(v) [Co(NH ₃) ₅ (ONO)] ²⁺	(vi) $[Co(NH_3)_6]_2(3)$	SO ₄) ₃ (vii)	$K_3[Cr(C_2O_4)_3]$	(viii)	[Pt(NH ₃) ₆] ⁴⁺				
	(ix) [CuBr ₄] ²⁻	(x) $[Co(NH_3)_5(N$	O ₂)] ²⁺	0 2 10		0.0				
5.9	(i) $[Cr(C_2O_4)_3]^{3^{-1}}$ Nil		-							
	(ii) $[Co(NH_{a})_{a}Cl_{a}]^{-}$ Two (fac- and mer-)									
5.12	Three (two cis and on	ne <i>trans</i>)								
5.13	Aqueous $CuSO_4$ solution exists as $[Cu(H_2O)_4]SO_4$ which has blue colour due to $[Cu(H_2O)_4]^{2+}$ ions									
	(i) When KF is added, the weak H_2O ligands are replaced by F ligands, forming $[CuF_4]^{2^\circ}$ ions									
	which is a green precipitate.									
	$[Cu(H_2O)_4]^{2+} + 4F^{-}$	$\rightarrow [CuF_4]^{2-} + 4$	H ₂ O							
	(ii) When KCl is added, Cl ligands replace the weak H_2O ligands forming $[CuCl_4)^{2-}$ ions which has bright green colour.									
	$[Cu(H_2O)_4]^{2+} + 4Cl^{-}$	\rightarrow [CuCl ₄] ²⁻ +	$4H_2O$							
5.14	$[Cu(H_2O)_4]^{2+} + 4 CN_4$	$N^{-} \rightarrow [Cu(CN)_{4}]^{2^{-}}$	+ 4H ₂ O							
	As CN ⁻ is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing H_2S , free Cu^{2+} ions are not available to form the precipitate of CuS.									
5.23	(i) $OS = +3$, $CN = 6$, $CN = 6$	d-orbital occupat	ion is $t_{2g}^{6} e_{g}^{0}$							
	(ii) $OS = +3$, $CN = 6$, c	$d^{3}(t_{2g}^{3}),$								
	(iii) $OS = +2$, $CN = 4$, C	${ m d}^7$ (${ m t}_{2{ m g}}^{~~5}~{ m e}_{ m g}^{~2}$),								
	(iv) $OS = +2$, $CN = 6$, C	$d^5 (t_{2g}^{3} e_{g}^{2}).$								
5.28	(iii)									
5.29	(ii)									
5.30	(iii)									
5.31	(iii)									
5.32	(i) The order of the lig	gand in the spect	rochemical s	eries :						
	$H_2O < NH_3 < NO_2^-$									
	Hence the energy of	of the observed li	ght will be ir	the order :						
	$[Ni(H_2O)_6]^{2+} < [Ni(N_2O)_6]^{2+}$	$[\mathrm{NH}_{3})_{6}]^{2+} < [\mathrm{Ni}(\mathrm{NO}_{2})]^{2+}$	₆] ^{4–}							
	Thus, wavelengths	s absorbed ($E = h$	c/λ) will be i	n the opposite	order.					

Notes

o herepublished

Notes

o herepublished