Answers to Some Guestions in Exercises

UNIT 1

$1.4 \quad 16.23 \mathrm{M}$
$1.6 \quad 157.8 \mathrm{~mL}$
$1.8 \quad 17.95 \mathrm{~m}$ and 9.10 M
$1.15 \quad 40.907 \mathrm{~g} \mathrm{~mol}^{-1}$
$1.17 \quad 12.08 \mathrm{kPa}$
$1.1923 \mathrm{~g} \mathrm{~mol}^{-1}, 3.53 \mathrm{kPa}$
1.21 $\mathrm{A}=25.58 \mathrm{u}$ and $\mathrm{B}=42.64 \mathrm{u}$
1.24 KCl, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$, Cyclohexane
1.25 Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol
1.265 m
1.28 1.424\%
1.304 .575 g
$1.33 \mathrm{i}=1.0753, \mathrm{~K}_{\mathrm{a}}=3.07 \times 10^{-3}$
1.35178×10^{-5}
$1.38 \quad 0.6$ and 0.4
$1.40 \quad 0.03 \mathrm{~mol}$ of CaCl_{2}
$1.5 \quad 0.617 \mathrm{~m}, 0.01$ and $0.99,0.67$
$1.733 .5 \%$
$1.9 \quad 1.5 \times 10^{-3} \%, 1.25 \times 10^{-4} \mathrm{~m}$
$1.16 \quad 73.58 \mathrm{kPa}$
$1.18 \quad 10 \mathrm{~g}$
$1.20 \quad 269.07 \mathrm{~K}$
$1.22 \quad 0.061 \mathrm{M}$
$1.27 \quad 2.45 \times 10^{-8} \mathrm{M}$
$1.29 \quad 3.2 \mathrm{~g}$ of water
$1.320 .65^{\circ}$
$1.34 \quad 17.44 \mathrm{~mm} \mathrm{Hg}$
1.36280 .7 torr, 32 torr
$1.39 x\left(\mathrm{O}_{2}\right) 4.6 \times 10^{-5}, x\left(\mathrm{~N}_{2}\right) 9.22 \times 10^{-5}$
$1.415 .27 \times 10^{-3} \mathrm{~atm}$.

UNIT 2

2.4 (i) $E^{0}=0.34 V, \Delta_{\mathrm{r}} G^{\mathrm{o}}=-196.86 \mathrm{~kJ} \mathrm{~mol}^{-1}, K=3.124 \times 10^{34}$
(ii) $E^{0}=0.03 \mathrm{~V}, \Delta_{\mathrm{r}} G^{0}=-2.895 \mathrm{~kJ} \mathrm{~mol}^{-1}, K=3.2$
2.5 (i) 2.68 V , (ii) 0.53 V , (iii) 0.08 V , (iv) -1.298 V
$2.6 \quad 1.56 \mathrm{~V}$
$2.8 \quad 124.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$2.9 \quad 0.219 \mathrm{~cm}^{-1}$
$2.11 \quad 1.85 \times 10^{-5}$
$2.123 \mathrm{~F}, 2 \mathrm{~F}, 5 \mathrm{~F}$
2.13 1F, 4.44F
2.14 2F, 1F
$2.15 \quad 1.8258 g$
$2.16 \quad 14.40 \mathrm{~min}$, Copper 0.427 g , Zinc 0.437 g

UNIT 3

3.2 (i) $8.0 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} ; 3.89 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$3.4 \mathrm{bar}^{-1 / 2} \mathrm{~s}^{-1}$
3.6 (i) 4 times
(ii) $1 / 4$ times
3.8 (i) $4.67 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(ii) $1.98 \times 10^{-2} \mathrm{~s}^{-1}$
3.9 (i) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
(ii) 9 times
3.10 Orders with respect to A is 1.5 and order with respect to B is zero.
3.11 rate law $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$; rate constant $=6.0 \mathrm{M}^{-2} \mathrm{~min}^{-1}$
3.13
(i) 3.47×10^{-3} seconds
(ii) 0.35 minutes
(iii) 0.173 years
$3.14 \quad 1845$ years
$3.164 .6 \times 10^{-2} \mathrm{~s}$
$3.17 \quad 0.7814 \mu \mathrm{~g}$ and $0.227 \mu \mathrm{~g}$.
3.1977 .7 minutes
$3.20 \quad 2.20 \times 10^{-3} \mathrm{~s}^{-1}$
$3.212 .23 \times 10^{-3} \mathrm{~s}^{-1}, 7.8 \times 10^{-4} \mathrm{~atm} \mathrm{~s}^{-1}$
$3.23 \quad 3.9 \times 10^{12} \mathrm{~s}^{-1}$
3.240 .135 M
$3.25 \quad 0.158 \mathrm{M}$
$3.26232 .79 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$3.27 \quad 239.339 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 3.2824^{\circ} \mathrm{C}$
$3.29 \quad \mathrm{E}_{\mathrm{a}}=76.750 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad k=0.9965 \times 10^{-2} \mathrm{~s}^{-1}$
$3.30 \quad 52.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

UNIT 4

4.2 It is because Mn^{2+} has $3 d^{5}$ configuration which has extra stability.
4.5 Stable oxidation states.
$3 d^{3}$ (Vanadium): $(+2),+3,+4$, and +5
$3 d^{5}$ (Chromium): $+3,+4,+6$
$3 d^{5}$ (Manganese): $+2,+4,+6,+7$
$3 d^{8}$ (Nickel): +2, +3 (in complexes)
$3 d^{4}$ There is no d^{4} configuration in the ground state.
4.6 Vanadate VO_{3}^{-}, chromate CrO_{4}^{2-}, permanganate MnO_{4}^{-}
4.10 +3 is the common oxidation state of the lanthanoids

In addition to +3 , oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
4.13 In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as $+2,+3,+4,+5,+6,+7$. In the nontransition elements the variation is selective, always differing by 2 , e.g. $+2,+4$, or $+3,+5$ or $+4,+6$ etc.
4.18 Except Sc^{3+}, all others will be coloured in aqueous solution because of incompletely filled $3 d$-orbitals, will give rise to d - d transitions.
4.21 (i) Cr^{2+} is reducing as it involves change from d^{4} to d^{3}, the latter is more stable configuration ($\mathrm{t}_{2 \mathrm{~g}}^{3}$) $\mathrm{Mn}(\mathrm{III})$ to $\mathrm{Mn}(\mathrm{II})$ is from $3 d^{4}$ to $3 d^{5}$ again $3 d^{5}$ is an extra stable configuration.
(ii) Due to CFSE, which more than compensates the $3^{\text {rd }}$ IE.
(iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^{1}.
4.23 Copper, because with +1 oxidation state an extra stable configuration, $3 d^{10}$ results.
4.24 Unpaired electrons $\mathrm{Mn}^{3+}=4, \mathrm{Cr}^{3+}=3, \mathrm{~V}^{3+}=2, \mathrm{Ti}^{3+}=1$. Most stable Cr^{3+}
4.28 Second part 59, 95, 102.
4.30 Lawrencium, 103, +3
$4.36 \mathrm{Ti}^{2+}=2, \mathrm{~V}^{2+}=3, \mathrm{Cr}^{3+}=3, \mathrm{Mn}^{2+}=5, \mathrm{Fe}^{2+}=6, \mathrm{Fe}^{3+}=5, \mathrm{CO}^{2+}=7, \mathrm{Ni}^{2+}=8, \mathrm{Cu}^{2+}=9$
$4.38 \mathrm{M} \sqrt{\mathrm{n}(\mathrm{n}+2)}=2.2, \mathrm{n} \approx 1, d^{2} \mathrm{sp}^{3}, \mathrm{CN}^{-}$strong ligand
$=5.3, \mathrm{n} \approx 4, \mathrm{sp}^{3}, d^{2}, \mathrm{H}_{2} \mathrm{O}$ weak ligand
$=5.9, \mathrm{n} \approx 5, \mathrm{sp}^{3}, \mathrm{Cl}^{-}$weak ligand .

UNIT 5

5.5 (i) + 3
(ii) +3
(iii) +2
(iv) +3
(v) +3
5.6
(i) $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(ii) $\mathrm{K}_{2}\left[\mathrm{PdCl}_{4}\right]$
(v) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$
(vi) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ix) $\left[\mathrm{CuBr}_{4}\right]^{2-}$
(x) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(iv) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(vii) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(viii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}{ }^{4+}\right.$
5.9 (i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3 "}-\mathrm{Nil}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{-}$Two (fac- and mer-)
5.12 Three (two cis and one trans)
5.13 Aqueous CuSO_{4} solution exists as $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4}$ which has blue colour due to $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ ions.
(i) When KF is added, the weak $\mathrm{H}_{2} \mathrm{O}$ ligands are replaced by F^{*} ligands, forming $\left[\mathrm{CuF}_{4}\right]^{2 /}$ ions which is a green precipitate.

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{~F}^{-} \rightarrow\left[\mathrm{CuF}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}
$$

(ii) When KCl is added, Cl^{-}ligands replace the weak $\mathrm{H}_{2} \mathrm{O}$ ligands forming $\left[\mathrm{CuCl}_{4}\right)^{2-}$ ions which has bright green colour.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
$5.14 \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
As CN^{-}is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing $\mathrm{H}_{2} \mathrm{~S}$, free Cu^{2+} ions are not available to form the precipitate of CuS.
5.23 (i) $\mathrm{OS}=+3, \mathrm{CN}=6$, d-orbital occupation is $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$,
(ii) $\mathrm{OS}=+3, \mathrm{CN}=6, \mathrm{~d}^{3}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3}\right)$,
(iii) $\mathrm{OS}=+2, \mathrm{CN}=4, \mathrm{~d}^{7}\left(\mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$,
(iv) $\mathrm{OS}=+2, \mathrm{CN}=6, \mathrm{~d}^{5}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$.
5.28 (iii)
5.29 (ii)
5.30 (iii)
5.31 (iii)
5.32 (i) The order of the ligand in the spectrochemical series :
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$
Hence the energy of the observed light will be in the order :
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
Thus, wavelengths absorbed $(\mathrm{E}=\mathrm{hc} / \lambda)$ will be in the opposite order.

Notes

Notes

