ANSWERS

Chapter 8

- **8.1** 1.8
- 8.2 (a) From the given graph for a stress of 150×10^6 N m⁻² the strain is 0.002

(b) Approximate yield strength of the material is 3×10^8 N m⁻²

- 8.3 (a) Material A
 - (b) Strength of a material is determined by the amount of stress required to cause fracture: material A is stronger than material B.
- **8.4** (a) False (b) True
- **8.5** 1.5×10^{-4} m (steel); 1.3×10^{-4} m (brass)
- **8.6** Deflection = 4×10^{-6} m
- **8.7** 2.8×10^{-6}
- **8.8** 0.127
- **8.9** 7.07×10^4 N
- **8.10** $D_{copper}/D_{iron} = 1.25$
- **8.11** $1.539 \times 10^{-4} \text{ m}$
- **8.12** 2.026×10^9 Pa
- **8.13** $1.034 \times 10^3 \text{ kg/m}^3$
- **8.14** 0.0027
- **8.15** 0.058 cm³
- 8.16 $2.2 \times 10^6 \,\mathrm{N/m^2}$

Chapter 9

- **9.3** (a) decreases (b) η of gases increases, η of liquid decreases with temperature (c) shear strain, rate of shear strain (d) conservation of mass, Bernoulli's equation (e) greater.
- **9.5** 6.2×10^6 Pa
- **9.6** 10.5 m
- **19.7** Pressure at that depth in the sea is about 3×10^7 Pa. The structure is suitable since it can withstand far greater pressure or stress.
- **9.8** 6.92×10^5 Pa
- **9.9** 0.800
- **9.10** Mercury will rise in the arm containing spirit; the difference in levels of mercury will be 0.221 cm.
- **9.11** No, Bernoulli's principle applies to streamline flow only.
- **9.12** No, unless the atmospheric pressures at the two points where Bernoulli's equation is applied are significantly different.
- **9.13** 9.8×10^2 Pa (The Reynolds number is about 0.3 so the flow is laminar).
- **9.14** 1.5×10^3 N
- **9.15** Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the tube is smaller), flow speed is larger due to mass conservation. Consequently pressure there is smaller according to Bernoulli's equation. We assume the fluid to be incompressible].
- **9.16** 0.64 m s⁻¹
- **9.17** $2.5 \times 10^{-2} \text{ N m}^{-1}$
- **9.18** 4.5×10^{-2} N for (b) and (c), the same as in (a).
- **9.19** Excess pressure = 310 Pa, total pressure = 1.0131×10^5 Pa. However, since data are correct to three significant figures, we should write total pressure inside the drop as 1.01×10^5 Pa.
- **9.20** Excess pressure inside the soap bubble = 20.0 Pa; excess pressure inside the air bubble in soap solution = 10.0 Pa. Outside pressure for air bubble = $1.01 \times 10^5 + 0.4 \times 10^3 \times 9.8 \times 1.2 = 1.06 \times 10^5$ Pa. The excess pressure is so small that up to three significant figures, total pressure inside the air bubble is 1.06×10^5 Pa.

Chapter 10

- **10.1** Neon: $-248.58 \,^{\circ}\text{C} = -415.44 \,^{\circ}\text{F};$ CO₂: $-56.60 \,^{\circ}\text{C} = -69.88 \,^{\circ}\text{F}$
 - (use $t_{\rm F} = \frac{9}{5}t_{\rm c} + 32$)

10.2 $T_{\rm A} = (4/7) T_{\rm B}$

- **10.3** 384.8 K
- **10.4** (a) Triple-point has a *unique* temperature; fusion point and boiling point temperatures depend on pressure; (b) The other fixed point is the absolute zero itself; (c) Triple-point is 0.01°C, not 0 °C; (d) 491.69.
- **10.5** (a) $T_A = 392.69 \text{ K}$, $T_B = 391.98 \text{ K}$; (b) The discrepancy arises because the gases are not perfectly ideal. To reduce the discrepancy, readings should be taken for lower and lower pressures and the plot between temperature measured versus absolute pressure of the gas at triple point should be extrapolated to obtain temperature in the limit pressure tends to zero, when the gases approach ideal gas behaviour.
- **10.6** Actual length of the rod at $45.0 \,^{\circ}\text{C} = (63.0 + 0.0136) \,\text{cm} = 63.0136 \,\text{cm}$. (However, we should say that change in length up to three significant figures is 0.0136 cm, but the total length is 63.0 cm, up to three significant places. Length of the same rod at 27.0 $^{\circ}\text{C} = 63.0 \,\text{cm}$.
- **10.7** When the shaft is cooled to temperature -69° C the wheel can slip on the shaft.
- **10.8** The diameter increases by an amount = 1.44×10^{-2} cm.
- **10.9** $3.8 \times 10^2 \, \text{N}$
- **10.10** Since the ends of the combined rod are not clamped, each rod expands freely.

 $\Delta l_{\text{brass}} = 0.21 \text{ cm}, \Delta l_{\text{steel}} = 0.126 \text{ cm} = 0.13 \text{ cm}$

Total change in length = 0.34 cm. No 'thermal stress' is developed at the junction since the rods freely expand.

- **10.11** 0.0147 = 1.5×10^{-2}
- **10.12** 103 °C
- 10.13 1.5 kg
- **10.14** 0.43 J g⁻¹ K⁻¹; smaller
- 10.15 The gases are diatomic, and have other degrees of freedom (i.e. have other modes of motion) possible besides the translational degrees of freedom. To raise the temperature of the gas by a certain amount, heat is to be supplied to increase the average energy of all the modes. Consequently, molar specific heat of diatomic gases is more than that of monatomic gases. It can be shown that if only rotational modes of motion are considered, the molar specific heat of diatomic gases is nearly (5/2) R which agrees with the observations for all the gases listed in the table, except chlorine. The higher value of molar specific heat of chlorine indicates that besides rotational modes, vibrational modes are also present in chlorine at room temperature.
- **10.16** 4.3 g/min
- 10.17 3.7 kg
- **10.18** 238 °C
- 10.20 9 min

Chapter 11

- **11.1** 16 g per min
- **11.2** 934 J
- **11.4** 2.64
- **11.5** 16.9 J
- **11.6** (a) 0.5 atm (b) zero (c) zero (assuming the gas to be ideal) (d) No, since the process (called free expansion) is rapid and cannot be controlled. The intermediate states are non-equilibrium states and do not satisfy the gas equation. In due course, the gas does return to an equilibrium state.
- **11.7** 25 W
- **11.8** 450 J

Chapter 12

- **12.1** 4×10^{-4}
- 12.3 (a) The dotted plot corresponds to 'ideal' gas behaviour; (b) $T_1 > T_2$; (c) 0.26 J K⁻¹; (d) No, 6.3×10^{-5} kg of H₂ would yield the same value
- **12.4** 0.14 kg
- **12.5** 5.3×10^{-6} m³
- **12.6** 6.10×10^{26}

12.7

- (a) 6.2×10^{-21} J (b) 1.24×10^{-19} J (c) 2.1×10^{-16} J
- **12.8** Yes, according to Avogadro's law. No, $v_{\rm rms}$ is largest for the lightest of the three gases; neon.
- **12.9** $2.52 \times 10^3 \,\mathrm{K}$
- **12.10** Use the formula for mean free path :

$$\bar{l} = \frac{1}{\sqrt{2}\pi nd^2}$$

where *d* is the diameter of a molecule. For the given pressure and temperature $N/V = 5.10 \times 10^{25} \text{ m}^{-3}$ and $= 1.0 \times 10^{-7} \text{ m}$. $v_{\text{rms}} = 5.1 \times 10^{2} \text{ m s}^{-1}$.

collisional frequency = $\frac{v_{\rm rms}}{\bar{l}} = 5.1 \times 10^9 \,\text{s}^{-1}$. Time taken for the collision = $d / v_{\rm rms} = 4 \times 10^{-13} \,\text{s}$.

Time taken between successive collisions = 1 / $v_{\rm rms}$ = 2 × 10⁻¹⁰ s. Thus the time taken between successive collisions is 500 times the time taken for a collision. Thus a molecule in a gas moves essentially free for most of the time.

Chapter 13

- **13.1** (b), (c)
- **13.2** (b) and (c): SHM; (a) and (d) represent periodic but not SHM [A polyatomic molecule has a number of natural frequencies; so in general, its vibration is a superposition of SHM's of a number of different frequencies. This superposition is periodic but not SHM].
- **13.3** (b) and (d) are periodic, each with a period of 2 s; (a) and (c) are not periodic. [Note in (c), repetition of merely one position is not enough for motion to be periodic; the entire motion during one period must be repeated successively].
- **13.4** (a) Simple harmonic, $T = (2\pi/\omega)$; (b) periodic, $T = (2\pi/\omega)$ but not simple harmonic; (c) simple harmonic, $T = (\pi/\omega)$; (d) periodic, $T = (2\pi/\omega)$ but not simple harmonic; (e) non-periodic; (f) non-periodic (physically not acceptable as the function $\rightarrow \infty$ as $t \rightarrow \infty$.
- **13.5** (a) 0, +, +; (b) 0, -, -; (c) -, 0,0; (d) -, -, -; (e) +, +, +; (f) -, -, -.
- **13.6** (c) represents a simple harmonic motion.
- **13.7** A = $\sqrt{2}$ cm, $\phi = 7\pi/4$; B = $\sqrt{2}$ cm, $a = \pi/4$.
- **13.8** 219 N
- **13.9** Frequency 3.2 s^{-1} ; maximum acceleration of the mass 8.0 m s^{-2} ; maximum speed of the mass 0.4 m s^{-1} .
- **13.10** (a) $x = 2 \sin 20t$
 - (b) $x = 2 \cos 20t$
 - (c) $x = -2 \cos 20t$

where x is in cm. These functions differ neither in amplitude nor frequency. They differ in initial phase.

- **13.11** (a) $x = -3 \sin \pi t$ where x is in cm.
 - (b) $x = -2 \cos \frac{\pi}{2} t$ where x is in cm.
- **13.13** (a) *F*/*k* for both (a) and (b).

(b)
$$T = 2\pi \sqrt{\frac{m}{k}}$$
 for (a) and $2\pi \sqrt{\frac{m}{2k}}$ for (b)

13.14 100 m/min

13.15 8.4 s

13.16 T = $2\pi \sqrt{\frac{l}{\sqrt{g^2 + v^4/R^2}}}$. Hint: Effective acceleration due to gravity will get reduced

due to radial acceleration v^2/R acting in the horizontal plane.

13.17 In equilibrium, weight of the cork equals the up thrust. When the cork is depressed by an amount *x*, the net upward force is $Ax\rho_i g$. Thus the force constant $k = A\rho_i g$.

Using $m = Ah\rho$, and $T = 2\pi \sqrt{\frac{m}{k}}$ one gets the given expression.

13.18 When both the ends are open to the atmosphere, and the difference in levels of the liquid in the two arms is *h*, the net force on the liquid column is $Ah\rho g$ where *A* is the area of cross-section of the tube and ρ is the density of the liquid. Since restoring force is proportional to *h*, motion is simple harmonic.

Chapter 14

- **14.1** 0.5 s
- **14.2** 8.7 s
- **14.3** $2.06 \times 10^4 \,\mathrm{N}$
- **14.4** Assume ideal gas law: $P = \frac{\rho RT}{M}$, where ρ is the density, *M* is the molecular mass, and

T is the temperature of the gas. This gives $v = \sqrt{\frac{\gamma RT}{M}}$. This shows that *v* is:

- (a) Independent of pressure.
- (b) Increases as \sqrt{T} .
- (c) The molecular mass of water (18) is less than that of N_2 (28) and O_2 (32).

Therefore as humidity increases, the effective molecular mass of air decreases and hence v increases.

14.5 The converse is not true. An obvious requirement for an acceptable function for a travelling wave is that it should be finite everywhere and at all times. Only function (c) satisfies this condition, the remaining functions cannot possibly represent a travelling wave.

Rationalised-2023-24

14.6 (a) 3.4×10^{-4} m (b) 1.49×10^{-3} m

14.7 $4.1 \times 10^{-4} \text{ m}$

- **14.8** (a) A travelling wave. It travels from right to left with a speed of 20 ms^{-1} .
 - (b) 3.0 cm, 5.7 Hz
 - (c) $\pi/4$
 - (d) 3.5 m
- **14.9** All the graphs are sinusoidal. They have same amplitude and frequency, but different initial phases.
- **14.10** (a) 6.4π rad
 - (b) 0.8π rad
 - (c) π rad
 - (d) $(\pi/2)$ rad
- **14.11** (a) Stationary wave
 - (b) $l = 3 \text{ m}, n = 60 \text{ Hz}, \text{ and } v = 180 \text{ m s}^{-1} \text{ for each wave}$
 - (c) 648 N
- **14.12** (a) All the points except the nodes on the string have the same frequency and phase, but not the same amplitude.
 - (b) 0.042 m
- **14.13** (a) Stationary wave.
 - (b) Unacceptable function for any wave.
 - (c) Travelling harmonic wave.
 - (d) Superposition of two stationary waves.
- **14.14** (a) 79 m s⁻¹
 - (b) 248 N

14.15 347 m s⁻¹

Hint :
$$v_n = \frac{(2n-1)v}{4l}$$
; $n = 1,2,3,...$ for a pipe with one end closed

- $14.16 \ 5.06 \ km \ s^{-1}$
- 14.17 First harmonic (fundamental); No.

14.18 318 Hz

BIBLIOGRAPHY

TEXTBOOKS

For additional reading on the topics covered in this book, you may like to consult one or more of the following books. Some of these books however are more advanced and contain many more topics than this book.

- 1. Ordinary Level Physics, A.F. Abbott, Arnold-Heinemann (1984).
- 2. Advanced Level Physics, M. Nelkon and P. Parker, 6th Edition Arnold-Heinemann (1987).
- 3. Advanced Physics, Tom Duncan, John Murray (2000).
- Fundamentals of Physics, David Halliday, Robert Resnick and Jearl Walker, 7th Edition John Wily (2004).
- 5. **University Physics**, H.D. Young, M.W. Zemansky and F.W. Sears, Narosa Pub. House (1982).
- **6. Problems in Elementary Physics**, B. Bukhovtsa, V. Krivchenkov, G. Myakishev and V. Shalnov, MIR Publishers, (1971).
- 7. Lectures on Physics (3 volumes), R.P. Feynman, Addision Wesley (1965).
- 8. Berkeley Physics Course (5 volumes) McGraw Hill (1965).
 - a. Vol. 1 Mechanics: (Kittel, Knight and Ruderman)
 - b. Vol. 2 Electricity and Magnetism (E.M. Purcell)
 - c. Vol. 3 Waves and Oscillations (Frank S. Craw-ford)
 - d. Vol. 4 Quantum Physics (Wichmann)
 - e. Vol. 5 Statistical Physics (F. Reif)
- Fundamental University Physics, M. Alonso and E. J. Finn, Addison Wesley (1967).
- 10. College Physics, R.L. Weber, K.V. Manning, M.W. White and G.A. Weygand, Tata McGraw Hill (1977).
- **11. Physics: Foundations and Frontiers**, G. Gamow and J.M. Cleveland, Tata McGraw Hill (1978).
- **12. Physics for the Inquiring Mind**, E.M. Rogers, Princeton University Press (1960)
- **13. PSSC Physics Course**, DC Heath and Co. (1965) Indian Edition, NCERT (1967)
- **14. Physics Advanced Level**, Jim Breithampt, Stanley Thornes Publishers (2000).
- **15**. **Physics**, Patrick Fullick, Heinemann (2000).

- 16. Conceptual Physics, Paul G. Hewitt, Addision-Wesley (1998).
- **17. College Physics,** Raymond A. Serway and Jerry S. Faughn, Harcourt Brace and Co. (1999).
- **18. University Physics,** Harris Benson, John Wiley (1996).
- **19. University Physics,** William P. Crummet and Arthur B. Western, Wm.C. Brown (1994).
- **20. General Physics,** Morton M. Sternheim and Joseph W. Kane, John Wiley (1988).
- 21. Physics, Hans C. Ohanian, W.W. Norton (1989).
- 22. Advanced Physics, Keith Gibbs, Cambridge University Press(1996).
- 23. Understanding Basic Mechanics, F. Reif, John Wiley (1995).
- 24. College Physics, Jerry D. Wilson and Anthony J. Buffa, Prentice-Hall (1997).
- 25. Senior Physics, Part I, I.K. Kikoin and A.K. Kikoin, Mir Publishers (1987).
- **26.** Senior Physics, Part II, B. Bekhovtsev, Mir Publishers (1988).
- **27. Understanding Physics,** K. Cummings, Patrick J. Cooney, Priscilla W. Laws and Edward F. Redish, John Wiley (2005)
- Essentials of Physics, John D. Cutnell and Kenneth W. Johnson, John Wiley (2005)

GENERAL BOOKS

For instructive and entertaining general reading on science, you may like to read some of the following books. Remember however, that many of these books are written at a level far beyond the level of the present book.

- 1. Mr. Tompkins in paperback, G. Gamow, Cambridge University Press (1967).
- 2. The Universe and Dr. Einstein, C. Barnett, Time Inc. New York (1962).
- 3. Thirty years that Shook Physics, G. Gamow, Double Day, New York (1966).
- 4. Surely You're Joking, Mr. Feynman, R.P. Feynman, Bantam books (1986).
- 5. One, Two, Three... Infinity, G. Gamow, Viking Inc. (1961).
- **6. The Meaning of Relativity**, A. Einstein, (Indian Edition) Oxford and IBH Pub. Co (1965).
- 7. Atomic Theory and the Description of Nature, Niels Bohr, Cambridge (1934).
- 8. The Physical Principles of Quantum Theory, W. Heisenberg, University of Chicago Press (1930).
- **9.** The Physics- Astronomy Frontier, F. Hoyle and J.V. Narlikar, W.H. Freeman (1980).
- The Flying Circus of Physics with Answer, J. Walker, John Wiley and Sons (1977).
- **11. Physics for Everyone** (series), L.D. Landau and A.I. Kitaigorodski, MIR Publisher (1978).
 - Book 1: Physical Bodies
 - Book 2: Molecules
 - **Book 3: Electrons**
 - Book 4: Photons and Nuclei.
- 12. Physics can be Fun, Y. Perelman, MIR Publishers (1986).
- **13. Power of Ten**, Philip Morrison and Eames, W.H. Freeman (1985).
- 14. Physics in your Kitchen Lab., I.K. Kikoin, MIR Publishers (1985).
- **15.** How Things Work : The Physics of Everyday Life, Louis A. Bloomfield, John Wiley (2005)
- **16. Physics Matters : An Introduction to Conceptual Physics,** James Trefil and Robert M. Hazen, John Wiley (2004).

INDEX

A

Absolute scale temperature	280
Absolute zero	280
Acceleration (linear)	45
Acceleration due to gravity	49,189
Accuracy	22
Action-reaction	97
Addition of vectors	67
Adiabatic process	311, 312
Aerofoil	262
Air resistance	79
Amplitude	344, 372
Angle of contact	267, 268
Angstrom	21
Angular Acceleration	154
Angular displacement	342
Angular frequency	344, 373
Angular momentum	155
Angular velocity	152
Angular wave number	372
Antinodes	381,382
Archimedes Principle	255
Area expansion	281
Atmospheric pressure	253
Average acceleration	45, 74
Average speed	42
Average velocity	42
Avogardo's law	325
В	

J

В		Conservation laws	12
Banked road	104	Conservation of angular momentum	157, 173
Barometer	254	Conservation of Mechanical Energy	121
Beat frequency	383	Conservation of momentum	98
Beats	382, 383	Conservative force	121
Bending of beam	244	Constant acceleration	46,75
Bernoulli's Principle	258	Contact force	100
Blood pressure	276	Convection	293
Boiling point	287	Couple	159
Boyle's law	326	Crest	371
Buckling	244	Cyclic process	312

Bulk modulus		242	
Buoyant force		255	
-			
C			
Calorimeter		285	
Capillary rise		268	
Capillary waves		370	
Carnot engine		316	
Central forces		186	
Centre of Gravity		161	
Centre of mass		144	
Centripetal acceleration		81	
Centripetal force		104	-
Change of state		287	,
Charle's law		326	;
Chemical Energy		126	
Circular motion		104	
Clausius statement		315	,
Coefficient of area expansion		283	5
Coefficient of linear expansion		281	
Coefficient of performance		314	
Coefficient of static friction		101	
Coefficient of viscosity		262	
Coefficient of volume expansion		281	
Cold reservoir		313	
Collision		129	
Collision in two dimensions		131	
Compressibility		242, 243	
Compressions	368,	369, 374	
Compressive stress		236, 243	
Conduction		290	
Conservation laws		12	
Conservation of angular momentum	n	157, 173	
Conservation of Mechanical Energy		121	
Conservation of momentum		98	
Conservative force		121	
Constant acceleration		46,75	,
Contact force		100	ł
Convection		293	
Couple		159	1

D

2	
Dalton's law of partial pressure	325
Damped oscillations	355
Damped simple Harmonic motion	355
Damping constant	355
Damping force	355
Derived units	16
Detergent action	269
Diastolic pressure	277
Differential calculus	61
Dimensional analysis	32
Dimensions	31
Displacement vector	66
Displacement	40
Doppler effect	385, 386
Doppler shift	387
Driving frequency	358
Dynamics of rotational motion	169

E

Efficiency of heat engine	313
Elastic Collision	129
Elastic deformation	236, 238
Elastic limit	238
Elastic moduli	239
Elasticity	235
Elastomers	239
Electromagnetic force	8
Energy	117
Equality of vectors	66
Equation of continuity	257
Equilibrium of a particle	99
Equilibrium of Rigid body	158
Equilibrium position	341, 342, 353
Errors in measurement	22
Escape speed	193

F

r	
First law of Thermodynamics	307
Fluid pressure	251
Force	94
Forced frequency	357
Forced oscillations	357, 358
Fracture point	238
Free Fall	49
Free-body diagram	100
Frequency of periodic motion	342,372
Friction	101
Fundamental Forces	6
Fundamental mode	381
Fusion	287
G	
0	050

Gauge pressure	
Geocentric model	

Geostationary satellite	196
Gravitational constant	189
Gravitational Force	8, 192
Gravitational potential energy	191
Gravity waves	370

\mathbf{H}

Harmonic frequency	380, 381
Harmonics	380, 381
Heat capacity	284
Heat engines	313
Heat pumps	313
Heat	279
Heliocentric model	183
Hertz	343
Hooke's law	238
Horizontal range	78
Hot reservoir	313
Hydraulic brakes	255, 256
Hydraulic lift	255, 256
Hydraulic machines	255
Hydraulic pressure	238
Hydraulic stress	238, 243
Hydrostatic paradox	253
I	

Ι

Ideal gas equation	280
Ideal gas	280, 325
Impulse	96
Inelastic collision	129
Initial phase angle	372
Instantaneous acceleration	74
Instantaneous speed	45
Instantaneous velocity	43
Interference	377
Internal energy	306, 330
Irreversible engine	315, 317
Irreversible processes	315
Isobaric process	311, 312
Isochoric process	311, 312
Isotherm	310
Isothermal process	311

\mathbf{K}

Kelvin-Planck statement	315
Kepler's laws of planetary motion	184
Kinematics of Rotational Motion	167
Kinematics	39
Kinetic energy of rolling motion	174
Kinetic Energy	117
Kinetic interpretation of temperature	329
Kinetic theory of gases	328

L

253	Laminar flow	258,264
183	Laplace correction	376

Latent heat of fusion	290	0
Latent heat of vaporisation	290	Odd harmonics
Latent heat	289	Orbital velocity/
Law of cosine	72	Order of magnitu
Law of equipartition of energy	332	Oscillations
Law of Inertia Law of sine	90 72	Oscillatory moti
	281	
Linear expansion Linear harmonic oscillator	349, 351	Ρ
Linear momentum	155	Parallax method
Longitudinal strain	236	Parallelogram la
Longitudinal strain	236, 239	Pascal's law
Longitudinal stress	230, 235	Path length
Longitudinal Wave	369, 376	Path of projectil
Longitudinar wave	000,010	Periodic force
Μ		Periodic motion
	001	Periodic time
Magnus effect	261	Permanent set
Manometer Mana Francisco Investo	254	Phase angle
Mass Energy Equivalence	126	Phase constant
Maximum height of projectile	78	Pipe open at bot
Maxwell Distribution	331	Pipe open at one
Mean free path	324, 335	Pitch
Measurement of length	18 21	Plastic deformat
Measurement of mass Measurement of temperature	21 279	Plasticity
Measurement of time	219	Polar satellite Position vector a
Melting point	286	Potential energy
Modes	380	Potential energy
Modulus of elasticity	238	Power
Modulus of rigidity	200	Precession
Molar specific heat capacity	284, 308	Pressure gauge
at constant pressure	201,000	Pressure of an id
Molar specific heat capacity	284, 308	Pressure
at constant volume	201,000	Principle of Cons
Molar specific heat capacity	284	Principle of mon
Molecular nature of matter	323	Progressive wave
Moment of Inertia	163	Projectile motion
Momentum	93	Projectile
Motion in a plane	72	Propagation con
Multiplication of vectors	67	Pulse
Musical instruments	384	•
		0

Ν

Natural frequency	358
Newton's first law of motion	91
Newton's Law of cooling	295
Newton's law of gravitation	185
Newton's second law of motion	93
Newton's third law of motion	96
Newtons' formula for speed of sour	nd 377
Nodes	381
Normal Modes	381, 382, 384
Note	384, 385
Nuclear Energy	126
Null vector	68

▲		
Parallax method	18	
Parallelogram law of addition of vectors	66	
Pascal's law	252	
Path length	40	
Path of projectile	78	
Periodic force	358	
Periodic motion	342	
Periodic time	342	
Permanent set	238	
Phase angle	344	
Phase constant	344	
Pipe open at both ends	382	
Pipe open at one end	381	
Pitch	384	
Plastic deformation	238	
Plasticity	235	
Polar satellite	196	
Position vector and displacement	73	
Potential energy of a spring	123	
Potential energy	120	
Power	128	
Precession	143	
Pressure gauge	253	
Pressure of an ideal gas	328	
Pressure	250	
Principle of Conservation of Energy	128	
Principle of moments	160	
Progressive wave	373	
Projectile motion	77	
Projectile	77	
Propagation constant	371	
Pulse	369	

g

Quasi-static p	process	310, 311
guasi-static p	process	510, 511

R

Radiation	294
Radius of Gyration	164
Raman effect	11
Rarefactions	369
Ratio of specific heat capacitie	es 334
Reaction time	51
Real gases	326
Rectilinear motion	39
Reductionism	2
Reflected wave	379
Reflection of waves	378

Refracted wave	379
Refrigerator	313
Regelation	287
Relative velocity in two dimensions	s 76
Relative velocity	51
Resolution of vectors	69
Resonance	358
Restoring force	236, 350, 369
Reversible engine	316, 317
Reversible processes	315
Reynolds number	264
Rigid body	141
Rolling motion	173
Root mean square speed	329
Rotation	142

S

S.H.M. (Simple Harmonic Motion)	343
Scalar-product	114
Scalars	65
Scientific Method	1
Second law of Thermodynamics	314
Shear modulus	242
Shearing strain	237
Shearing stress	237, 243
SI units	16
Significant figures	27
Simple pendulum	343, 353
Soap bubbles	268
Sonography	387
Sound	375
Specific heat capacity of Solids	308, 335
Specific heat capacity of Gases	333, 334
Specific heat capacity of Water	335
Specific heat capacity	285, 308
Speed of efflux	259
Speed of Sound	375, 376
Speed of Transverse wave	375, 376
on a stretched string	
Sphygmomanometer	277
Spring constant	352, 355
Standing waves	380
Stationary waves	382
Steady flow	257
Stethoscope	281
Stokes' law	263
Stopping distance	50
Strain	236
Streamline flow	257, 258
Streamline	257, 258
Stress	236
Stress-strain curve	238
Stretched string	374
Sublimation	294
Subtraction of vectors	67
Superposition principle	378
Surface energy	265

Surface tension	265
Symmetry	146
System of units	16
Systolic pressure	277
*	
Т	
Temperature	279
Tensile strength	238
Tensile stress	236
Terminal velocity	264
Theorem of parallel axes	167
Theorem of perpendicular axes	165
Thermal conductivity	291
Thermal equilibrium	304
Thermal expansion	281
Thermal stress	284
Thermodynamic processes	310
Thermodynamic state variables	309
Thermodynamics	3, 303
Time of flight	78
Torque	154
Torricelli's Law	259, 260
Trade wind	294
Transmitted wave	379
Travelling wave	380
Triangle law of addition of vectors	66
Triple point	288
Trough	371
Tune	384
Turbulent flow	258, 259
U	

U

ŀ	Ultimate strength	238
5	Ultrasonic waves	387
3	Unification of Forces	10
)	Unified Atomic Mass Unit	21
3	Uniform circular motion	79
3	Uniform Motion	41
	Uniformly accelerated motion	47
7	Unit vectors	70

\mathbf{V}

Vane	356
Vaporisation	288
Vector-product	151
Vectors	66
Velocity amplitude	349
Venturi meter	260
Vibration	341
Viscosity	262
Volume expansion	281
Volume Strain	238

W

Wave equation	374
Wavelength	372
Wave speed	374

Waves Waxing and waning of sound Weak nuclear force Weightlessness Work done by variable force Work Work-Energy Theorem	368 385 9 197 118 116 116	Y Yield Point Yield strength Young's modulus Z	238 238 239
Working substance	313	Zeroth law of Thermodynamics	305

Notes