NCERT Solutions for Class 8 Maths Chapter 11 Mensuration Ex 11.3

Ex 11.3 Class 8 Maths Question 1.
There are two cuboidal boxes as shown in the figure. Which box requires the lesser amount of material to make?

(a)

(b)

Solution:
(a) Volume of the cuboid $=1 \times b \times h=60 \times 40 \times 50=120000 \mathrm{~cm}^{3}$
(b) Volume of cube $=(\text { Side })^{3}=(50)^{3}=50 \times 50 \times 50=125000 \mathrm{~cm}^{3}$

Cuboidal box (a) requires lesser amount of material.

Ex 11.3 Class 8 Maths Question 2.
A suitcase with measures $80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm}$ is to be covered with a tarpaulin cloth. How many metres of tarpaulin of width 96 cm is required to cover 100 such suitcases?
Solution:
Measurement of the suitcase $=80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm}$
l = $80 \mathrm{~cm}, \mathrm{~b}=48 \mathrm{~cm}$ and $\mathrm{h}=24 \mathrm{~cm}$
Total surface area of the suitcase $=2[l \mathrm{lb}+\mathrm{bh}+\mathrm{hl}]$
$=2[80 \times 48+48 \times 24+24 \times 80]$
$=2[3840+1152+1920]$
$=2 \times 6912$
$=13824 \mathrm{~cm}^{2}$
Area of tarpaulin $=$ length \times breadth $=\mid \times 96=961 \mathrm{~cm}^{2}$
Area of tarpaulin $=$ Area of 100 suitcase
$961=100 \times 13824$
$\mathrm{I}=100 \times 144=14400 \mathrm{~cm}=144 \mathrm{~m}$
Hence, the required length of the cloth $=144 \mathrm{~m}$.

Ex 11.3 Class 8 Maths Question 3.
Find the side of a cube whose surface area is $600 \mathrm{~cm}^{2}$?
Solution:
Total surface area of a cube $=61^{2}$
$61^{2}=600$
$1^{2}=100$
$I=\sqrt{ } 100=10 \mathrm{~cm}$
Hence, the required length of side $=10 \mathrm{~cm}$.

Ex 11.3 Class 8 Maths Question 4.

Rukhsar painted the outside of the cabinet of measure $1 \mathrm{~m} \times 2 \mathrm{~m} \times 1.5 \mathrm{~m}$. How much surface area did she cover if she painted all except the bottom of the cabinet?

Solution:
I = $2 \mathrm{~m}, \mathrm{~b}=1.5 \mathrm{~m}, \mathrm{~h}=1 \mathrm{~m}$
Area of the surface to be painted = Total surface area of box - Area of base of box
$=2[|b+b h+h|]-\mid b$
$=2[2 \times 1.5+1.5 \times 1+1 \times 2]-2 \times 1$
$=2[3+1.5+2]-2$
$=2[6.5]-2$
$=13-2$
$=11 \mathrm{~m}^{2}$
Hence, the required area $=11 \mathrm{~m}^{2}$.

Ex 11.3 Class 8 Maths Question 5.

Daniel is painting the walls and ceiling of a cuboidal hall with length, breadth and height of $15 \mathrm{~m}, 10 \mathrm{~m}$ and 7 m respectively. From each can of paint $100 \mathrm{~m}^{2}$ of the area is painted. How many cans of paint will she need to paint the room?

Solution:

Surface area of a cuboidal hall without bottom = Total surface area - Area of base
$=2[\mid b+b h+h l]-l b$
$=2[15 \times 10+10 \times 7+7 \times 15]-15 \times 10$
$=2[150+70+105]-150$
$=2[325]-150$
= $650-150$
$=500 \mathrm{~m}^{2}$
Area of the paint in one can $=100 \mathrm{~m}^{2}$
Number of cans required $=\frac{500}{100}=5$ cans.

Ex 11.3 Class 8 Maths Question 6.

Describe how the two figures at the right are alike and how they are different. Which box has a larger lateral surface area?

Solution:

The two figures given are cylinder and cube.
Both figures are alike in respect of their same height.
Cylinder: $\mathrm{d}=1 \mathrm{~cm}, \mathrm{~h}=7 \mathrm{~cm}$
Cube: Length of each side a = 7 cm
Both of the figures are different in respect of their shapes.
Lateral surface of cylinder $=2 \pi r h$
$=2 \times \frac{22}{7} \times \frac{7}{2} \times 7=154 \mathrm{~cm}^{2}$
Lateral surface of the cube $=\left.4\right|^{2}=4 \times(7)^{2}=4 \times 49=196$
So, cube has the larger lateral surface $=196 \mathrm{~cm}^{2}$.
Ex 11.3 Class 8 Maths Question 7.
A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How many sheets of metal is required?
Solution:

Area of metal sheet required $=$ Total surface area of the cylindrical tank $=2 \pi r(h+r)$
$=2 \times \frac{22}{7} \times 7(3+7)$
$=2 \times \frac{22}{7} \times 7 \times 10$
$=440 \mathrm{~m}^{2}$
Hence, the required area of sheet $=440 \mathrm{~m}^{2}$.

Ex 11.3 Class 8 Maths Question 8.

The lateral surface area of a hollow cylinder is $4224 \mathrm{~cm}^{2}$. It is cut along its height and formed a rectangular sheet of width 33 cm . Find the perimeter of the rectangular sheet.
Solution:
Width of the rectangular sheet = Circumference of the cylinder

$$
\begin{array}{rlrl}
& 33 & =2 \pi r \\
\Rightarrow \quad 33 & =2 \times \frac{22}{7} \times r \\
\Rightarrow \quad r & =\frac{33^{3} \times 7}{2 \times 22_{2}}=\frac{21}{4} \mathrm{~cm}
\end{array}
$$

Now lateral surface area of the cylinder $=2 \pi r h$

$$
\begin{aligned}
& 4224= 2 \times \frac{22}{7} \times \frac{21}{4} \times h \\
& \therefore \quad h=\frac{4208128}{4224} \times \not 2 \times \not A^{22} \\
& 2 \times 22 \times \not 21
\end{aligned}
$$

$\mathrm{h}=128 \mathrm{~cm}$
I = $128 \mathrm{~cm}, \mathrm{~b}=33 \mathrm{~cm}$
Perimeter of the sheet $=2(I+b)=2(128+33)=2 \times 161=322 \mathrm{~cm}$
Hence, the required perimeter $=322 \mathrm{~cm}$.

Ex 11.3 Class 8 Maths Question 9.
A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m .

Solution:
The lateral surface area of the road roller $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 42 \times 100 \\
& \qquad\left[\because r=\frac{64}{2}=42 \mathrm{~cm}\right] \\
& =26400 \mathrm{~cm}^{2}
\end{aligned}
$$

Area covered by the roller in 750 complete revolutions

$$
\begin{aligned}
= & 26400 \times 750 \mathrm{~cm}^{2} \\
= & 19800000 \mathrm{~cm}^{2} \\
& \frac{19800000}{10000} \mathrm{~m}^{2} \\
= & 1980 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of road $=1980 \mathrm{~m} 2$

Ex 11.3 Class 8 Maths Question 10.
A company packages its milk powder in a cylindrical container whose base has a diameter of 14 cm and height 20 cm . The company places a label around the surface of the container (as shown in the figure). If the label is placed 2 cm from top and bottom, what is the area of the label?

Solution:
Here, $r=\frac{14}{2}=7 \mathrm{~cm}$
Height of the cylindrical label $=20-(2+2)=16 \mathrm{~cm}$
Surface area of the cylindrical shaped label $=2 \pi r h$
$=2 \times \frac{22}{7} \times 7 \times 16$
$=704 \mathrm{~cm}^{2}$
Hence, the required area of label $=704 \mathrm{~cm}^{2}$.

