10. वृत्त

प्रश्नावली 10.1

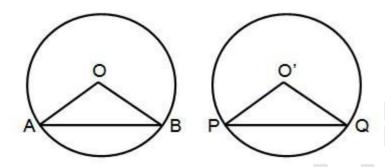
Q1. खाली स्थान भरिए:
(i) वृत्त का केन्द्र वृत्त के
(ii) एक बिन्दु, जिसकी वृत्त के केन्द्र से दूरी त्रिज्या से अधिक हो, वृत्त के स्थित होता
(बहिर्भाग/अभ्यंतर)।
(iii) वृत्त की सबसे बड़ी जीवा वृत्त का होता है।
(iv) एक चाप होता है, जब इसके सिरे एक व्यास के सिरे हों।
(v) वृत्तखंड एक चाप तथा के बीच का भाग होता है।
(vi) एक वृत्त, जिस तल पर स्थित है, उसे भागों में विभाजित करता है।
उत्तर:
(i) अभ्यंतर
(ii) बहिर्भाग
(iii) ब्यास
(iv) अर्धवृत
(v) जीवा
(vi) अनंत
Q2. लिखिए, सत्य या असत्य। अपने उत्तर के कारण दीजिए।
(i) केन्द्र को वृत्त पर किसी बिन्दु से मिलाने वाला रेखाखंड वृत्त की त्रिज्या होती है।
(ii) एक वृत्त में समान लंबाई की परिमित जीवाएँ होती हैं।
(iii) यदि एक वृत्त को तीन बराबर चापों में बाँट दिया जाए, तो प्रत्येक भाग दीर्घ चाप होता है।
(iv) वृत्त की एक जीवा, जिसकी लम्बाई त्रिज्या से दो गुनी हो, वृत्त का व्यास है।
(v) त्रिज्यखंड, जीवा एवं संगत चाप के बीच का क्षेत्र होता है।
(vi) वृत्त एक समतल आकृति है।
उत्तर:
(i) सत्य
(ii) सत्य
(iii) असत्य

- (iv) सत्य
- (v) असत्य
- (vi) सत्य

प्रश्नावली 10.2

Q1. याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।

हल:



दिया है: O और O' वाले दो सर्वांगसम

वृत्त हैं जिनकी बराबर जीवाएं AB = PQ है |

सिद्ध करना है:

 $\angle AOB = \angle PO'Q \frac{3}{8}$

प्रमाण : ΔAOB तथा ΔPO'Q में

AO = PO' (सर्वांगसम वृत्त की त्रिज्या बराबर होती है)

BO = QO' (सर्वांगसम वृत्त की त्रिज्या)

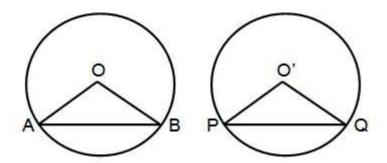
AB = PQ (दिया है)

SSS सर्वांगसमता नियम से

 $\triangle AOB \cong \triangle PO'Q$

अत: ∠AOB = ∠PO'Q (BY CPCT) Proved

Q2. सिद्ध कीजिए कि यदि सर्वांगसम वृत्तों की जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।



हल:

दिया है: O और O' वाले दो सर्वांगसम

वृत्त हैं जिनमें ∠AOB = ∠PO'Q है |

सिद्ध करना है:

AB = PQ है |

प्रमाण : $\triangle AOB$ तथा $\triangle PO'Q$ में

AO = PO' (सर्वांगसम वृत्त की त्रिज्या बराबर होती है)

BO = QO' (सर्वांगसम वृत्त की त्रिज्या)

 $\angle AOB = \angle PO'Q$ (दिया है)

SSS सर्वांगसमता नियम से

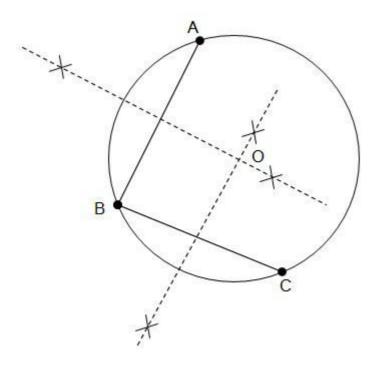
 $\triangle AOB \cong \triangle PO'Q$

अत: AB = PQ (BY CPCT) Proved

Exercise 10.3

Q1. वृत्तों के कई जोड़े (युग्म) खींचिए। प्रत्येक जोड़े में कितने बिन्दु उभयनिष्ठ हैं? उभयनिष्ठ बिन्दुओं की अधिकतम संख्या क्या है?

Q2. मान लीजिए आपको एक वृत्त दिया है। एक रचना इसके केंद्र को ज्ञात करने के लिए दीजिए।



हल: रचना के पद:

- (i) दिया हुआ बिना केंद्र वाला एक खिंचा |
- (ii) वृत्त पर तीन असंरेखी बिन्दुएँ A,B तथा C डाला और A को B से और B को C से मिलाया \mid
- (iii) रेखाखंड AB और BC का लंब समद्विभाजक खिंचा जो एक दुसरे को बिंदु O पर प्रतिच्छेद करते हैं |
- (iv) बिंदु O ही दिए गए वृत्त का अभीष्ट केंद्र है |
- Q3. यदि दो वृत्त परस्पर दो बिन्दुओं पर प्रतिच्छेद करें, तो सिद्ध कीजिए कि उनके केंद्र उभयनिष्ठ जीवा के लम्ब समद्विभाजक पर स्थित हैं।

हल:

दिया है : O और O' वाले दो वृत्त एक

दुसरे को बिन्दुओं A और B पर प्रतिच्छेद करती हैं |

अत: उभयनिष्ठ जीवा AB है |

दिया है: O और O' वाले दो वृत्त एक

दुसरे को बिन्दुओं A और B पर प्रतिच्छेद करती हैं \mid

अत: उभयनिष्ठ जीवा AB है |

सिद्ध करना है : AM = BM और OM ⊥ AB है |

प्रमाण : △OAO' तथा △OBO' में

OA = OB (एक ही वृत्त की त्रिज्यायें)

O'A = O'B (एक ही वृत्त की त्रिज्यायें)

00' = 00' (उभयनिष्ठ)

SSS सर्वांगसमता नियम से

 $\triangle OAO' \cong \triangle OBO'$

अत: ∠AOO' = ∠BOO' (1) By CPCT

अब, △AOM तथा △BOM में

AO = BO (एक ही वृत्त की त्रिज्याएँ)

OM = OM (उभयनिष्ठ)

∠AOM = ∠BOM समी॰ (1) से

SAS सर्वांगसमता नियम से

 $\triangle AOM \cong \triangle BOM$

अत: AM = BM और ∠OMA = ∠OMB ...(2)

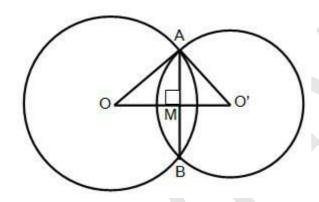
अब चूँकि AB एक सरल रेखा है |

या
$$∠OMA = \frac{180^{\circ}}{2} = 90^{\circ}$$

अतः AM = BM और OM ⊥ AB है | Proved

Exercise – 10.4

Q1. 5 cm तथा 3 cm त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों बीच की दूरी 4 cm है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।



$$AO = 5 \text{ cm}$$

$$AO' = 3 \text{ cm}$$

$$OO' = 4 \text{ cm}$$

$$AB = ?$$

$$S = \frac{a+b+c}{2} = \frac{5+4+3}{2} = \frac{12}{2} = 6 \text{ cm}$$

∆OAO' का क्षेत्रफल (हेरॉन सूत्र से)

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{6(6-5)(6-4)(6-3)}$$

$$=\sqrt{6(1)(2)(3)}$$

$$=\sqrt{6\times6}$$

$$= 6 \text{ cm}^2$$

 $\triangle OAO'$ का क्षेत्रफल = $\frac{1}{2} \times 4 \times AM$

या 6 cm² =
$$\frac{1}{2} \times 4 \times AM$$

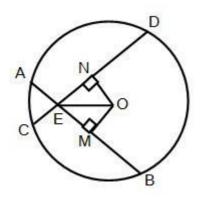
या
$$AM = \frac{6}{2} \text{ cm}^2$$

या
$$AM = 3 \text{ cm}^2$$

अत:
$$AB = 2 AM = 2 \times 3 \text{ cm}^2 = 6 \text{ cm}^2$$

अत: उभयनिष्ठ जीवा की लम्बाई 6 cm² है |

Q2. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के खंड दूसरी जीवा के संगत खंडों के बराबर हैं।



दिया है: O केंद्र वाले वृत्त की दो बराबर

जीवाएं AB तथा CD हैं | जो एक दुसरे को

बिंदु E पर प्रतिच्छेद करती हैं |

सिद्ध करना है : AE = CE और BE = DE है |

रचना : O से M तथा N को मिलाया |

प्रमाण : OM ⊥ AB और ON ⊥ CD है |

(जीवा को केंद्र से मिलाने वाली रेखा जीवा पर लंब होती है |)

∆EOM तथा ∆EON में

OM = ON (बराबर जीवाओं की केंद्र से दुरी)

EO = EO (उभयनिष्ठ)

∠OME = ∠ONE (प्रत्येक 90°)

RHS सर्वांगसमता नियम से

ΔEOM ≅ ΔEON

इसलिए, EM = EN (1) By CPCT

जबिक AB = CD (दिया है)

या
$$\frac{1}{2}$$
 AB = $\frac{1}{2}$ CD

अब समीकरण (2) में से (1) घटाने पर

$$AM - EM = CN - EN$$

या AE = CE Proved (i)

अब समीकरण (3) में (1) जोड़ने पर

$$BM + EM = DN + EN$$

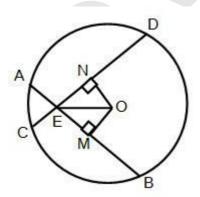
या BE = DE Proved (ii)

अत: AE = CE और BE = DE है |

इसलिए जीवा के संगत अंत:खंड बराबर हैं |

Q3. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केंद्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।

हल:



दिया है: O केंद्र वाले वृत्त की दो बराबर जीवायें

AB तथा CD वृत्त के अन्दर बिंदु E पर

प्रतिच्छेद करती हैं |

रचना : E को केंद्र O से मिलाया |

सिद्ध करना है : ∠MEO = ∠NEO

प्रमाण : OM ⊥ AB और ON ⊥ CD है |

(जीवा को केंद्र से मिलाने वाली रेखा जीवा पर लंब होती है |)

ΔΕΟΜ तथा ΔΕΟΝ में

OM = ON (बराबर जीवाओं की केंद्र से दुरी)

EO = EO (उभयनिष्ठ)

∠OME = ∠ONE (प्रत्येक 90°)

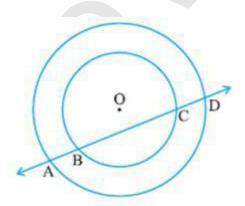
RHS सर्वांगसमता नियम से

ΔEOM ≅ ΔEON

अत: ∠MEO = ∠NEO By CPCT Proved

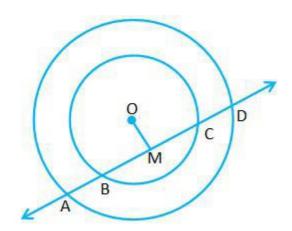
Q4. यदि एक रेखा दो संकेंद्री वृतों (एक ही केंद्र वाले वृत्त) को, जिनका केंद्र O है, A, B, C और D पर प्रतिच्छेद करे, तो सिद्ध कीजिए AB = CD है |

हल:



दिया है: दो संकेंद्री वृत्त जिनका केंद्र O है |

एक रेखा वृत्त को A, B, C और D पर प्रतिच्छेद करती हैं |



सिंख करना है : AB = CD

रचना : OM ⊥ AD खिंचा |

प्रमाण : OM \(AD (रचना से)

इसलिए, AM = DM(1)

(जीवा पर लम्ब जीवा को समद्विभाजित करता है)

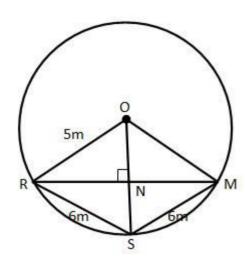
इसीप्रकार, BM = CM (2)

समीकरण (1) में से (2) घटाने पर

AM - BM = DM - CM

या AB = CD Proved

Q5. एक पार्क में बने 5 m त्रिज्या वाले वृत्त पर खड़ी तीन लड़िकयाँ रेशमा, सलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पास, सलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी 6 m हो, तो रेशमा और मनदीप के बीच की दूरी क्या है?



वृत्त का केंद्र O और और माना कि वृत्त पर

रेशमा (R), सलमा (S) और मनदीप (M) है |

RS = 6 m, SM = 6 m और RM = ?

$$OR = OS = 5 \text{ cm } \frac{8}{5} \mid$$

ΔROS में,

a = 5 cm, b = 5 cm और c = 6 cm

इसलिए, S =
$$\frac{a+b+C}{2} = \frac{5+5+6}{2} = \frac{16}{2} = 8 \text{ cm}$$

△ROS का क्षेत्रफल (हेरॉन सूत्र से)

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{8(8-5)(8-5)(8-6)}$$

$$=\sqrt{8(3)(3)(2)}$$

$$=\sqrt{3\times3\times4\times4}$$

$$= 3 \times 4 = 12 \text{ cm}^2$$

अब, $\triangle ROS$ का क्षेत्रफल = $\frac{1}{2}$ × आधार × ऊँचाई

$$12 = \frac{1}{2} \times OS \times RN$$

$$12 = \frac{1}{2} \times 5 \times RN$$

RN =
$$12 \times \frac{2}{5}$$

$$RN = \frac{24}{5} = 4.8 \text{ m}$$

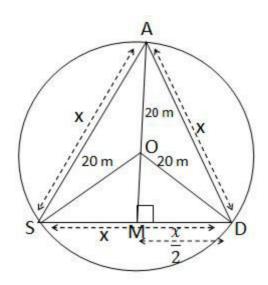
 $RM = 2 \times RN$

$$RM = 2 \times 4.8$$

= 9.6 m

अत: रेशमा और मनदीप की बीच की दुरी 9.6 है |

Q6. 20 m त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कालोनी में स्थित है। तीन लड़के अंकुर, सैयद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।



माना अंकुर की स्थिति A, सैयद की S और डेविड की D है | अत: फोन की डोरी की लंबाई AS = SD = AD = x m है | वृत्त की त्रिज्या AO = OS = OD = 20 m है |

रचना : OM ⊥ SD खिंचा |

चूँकि △ASD एक समबाहु है |

इसलिए
$$\triangle ASD$$
 का क्षेत्रफल = $\frac{\sqrt{3}}{4}$ a^2

$$=\frac{\sqrt{3}}{4} x^2 \text{ m}^2$$

अब, चूँकि OM ⊥ SD है |

इसलिए, समकोण $\triangle DOM$ में, $OD = 20 \text{ m DM} = \frac{x}{2} \text{ m}$

अतः पाइथागोरस प्रमेय से,

$$OD^2 = OM^2 + DM^2$$

या
$$20^2 = OM^2 + \left(\frac{x}{2}\right)^2$$

या 400 =
$$OM^2 + \frac{x^2}{4}$$

या OM² = 400 -
$$\frac{x^2}{4}$$

या
$$OM^2 = \frac{1600 - x^2}{4}$$

या OM =
$$\sqrt{\frac{1600 - x^2}{4}}$$

या OM =
$$\frac{\sqrt{1600 - x^2}}{2}$$
 m

अब, $\triangle ASD$ का क्षेत्रफल = 3 ($\triangle SOD$ का क्षेत्रफल)

[क्योंकि ar(SOD) = ar(AOS) = ar(AOD) है]

अत:
$$\frac{\sqrt{3}}{4} x^2 = 3 (\frac{1}{2} \times SD \times OM)$$

या
$$\frac{\sqrt{3}}{4} x^2 = 3 \left(\frac{1}{2} \times x \times \frac{\sqrt{1600 - x^2}}{2} \right)$$

या
$$\frac{\sqrt{3}}{4} x^2 = (\frac{3}{4} \times x \sqrt{1600 - x^2})$$

या
$$\sqrt{3} x^2 = (3x \sqrt{1600 - x^2})$$

या
$$x = (\sqrt{3}\sqrt{1600 - x^2})$$
 [दोनों पक्षों से सरलीकरण करने पर]

या
$$x = \sqrt{3(1600 - x^2)}$$

या
$$x^2 = 3(1600 - x^2)$$
 [दोनों पक्षों को वर्ग करने पर]

या
$$x^2 = 4800 - 3x^2$$

या
$$x^2 + 3x^2 = 4800$$

या
$$4x^2 = 4800$$

या
$$x^2 = \frac{4800}{4}$$

या
$$x^2 = 1200$$

या
$$x = \sqrt{1200}$$

या
$$x = \sqrt{400 \times 3}$$

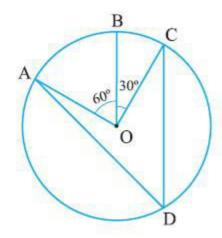
या
$$x = 20\sqrt{3}$$
 m

अतः डोरी की लंबाई 20√3 m है |

Exercise 10.5

Q1. आकृति 10.36 में, केंद्र O वाले एक वृत्त पर तीन बिंदु A, B और C इस प्रकार हैं कि $\angle BOC = 30\,^\circ$ तथा $\angle AOB = 60\,^\circ$ है | यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, रो $\angle ADC$ ज्ञात कीजिए |

हल:



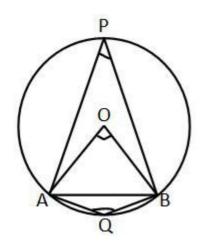
∠AOC = 2 ∠ADC (प्रमेय 10.8 से)

[एक चाप द्वारा वृत्त के केंद्र पर अंतरित कोण वृत्त के शेष भाग के किसी बिंदु पर अंतरित कोण का दुगुना होता है |]

या
$$\angle ADC = \frac{90^{\circ}}{2} = 45^{\circ}$$

अत: ∠ADC = 45°

Q2. किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है | जीवा द्वारा लघु चाप के किसी बिंदु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिंदु पर भी अंतरित कोण ज्ञात कीजिए |



चाप AB त्रिज्याएँ OA तथा OB के बराबर है |

इसलिए $\triangle AOB$ एक समबाहु त्रिभुज है |

अत: ∠AOB = 60 ° (समबाहु त्रिभुज के प्रत्येक कोण)

अब, ∠AOB = 2∠APB

(वृत्त के केंद्र पर बना कोण शेष वृत्त पर बने कोण का दुगुना होता है)

या 60 ° = 2∠APB

या
$$\angle APB = \frac{60^{\circ}}{2} = 30^{\circ}$$

अतः दिर्घ चाप में बना कोण 30° है |

अब चूँकि APBQ एक चक्रीय चतुर्भुज है |

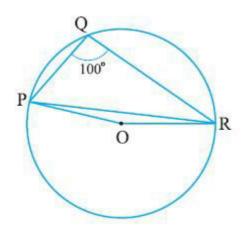
इसलिए ∠P + ∠Q = 180°

(चक्रीय चतुर्भुज के सम्मुख कोणों का योग)

अतः दीर्घ वृत्त में बना कोण 150° है |

Q3. आकृति 10.37 में, $\angle PQR = 100\,^\circ$ है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं $|\angle OPR$ ज्ञात कीजिए |

हल:



दिया है - $\angle PQR = 100$ ° है |

चूँकि (वृत्त के केंद्र पर बना कोण शेष वृत्त पर बने कोण का दुगुना होता है)

इसलिए ∠POR = 2 ∠PQR

या ∠POR = 2 × 100 °

या ∠POR = 200 °

अब प्रतिवर्ती ∠POR = 360 ° - 200 °

या प्रतिवर्ती ∠POR = 160 °

 ΔPOR में, PO = RO (एक ही वृत्त की त्रिज्या)

इसलिए $\angle OPR = \angle ORP$ (1) (बराबर भुजाओं के सम्मुख कोण बराबर होते हैं)

अब, ∠OPR + ∠ORP + ∠POR = 180 ° (तीनों कोणों का योग)

या ∠OPR + ∠OPR + 160° = 180° समी० (1) से

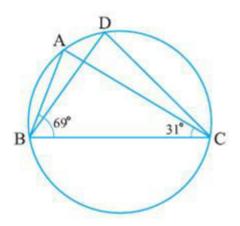
या 2 ∠OPR = 180° - 160°

या 2 ∠OPR = 20°

या
$$\angle OPR = \frac{20^{\circ}}{2}$$

Q4. आकृति 10.38 में, ∠ABC = 69 ° और ∠ACB = 31 ° हो, तो ∠BDC ज्ञात कीजिए |

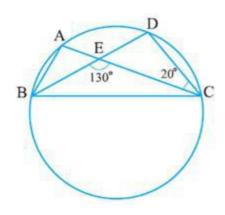
हल:



 ΔABC में,

$$∠$$
ABC + $∠$ ACB + $∠$ BAC = 180 $^{\circ}$ (त्रिभुज के तीनों का योग)

Q5. आकृति 10.39 में, एक वृत्त पर A, B, C और D चार बिंदु हैं | AC और BD एक बिंदु E पर इस प्रकार प्रतिच्छेद करते हैं कि \angle BEC = 130° तथा \angle ECD = 20° है | \angle BAC ज्ञात कीजिए |



BED एक सरल रेखा है |

इसलिए, ∠BEC + ∠CED = 180 ° (रैखिक युग्म)

या 130° + ∠CED = 180 °

या ∠CED = 180 ° - 130°

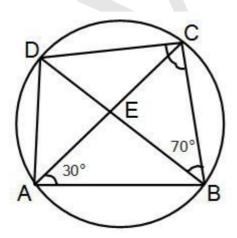
या ∠CED = 50°

अब ∠BAC = ∠CED [क्योंकि एक ही वृत्त खंड में बने कोण बराबर होते हैं]

इसलिए ∠BAC = 50°

Q6. ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि ∠DBC = 70° और ∠BAC = 30° हो, तो ∠BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो ∠ECD ज्ञात कीजिए।

हल:



दिया है कि ∠DBC = 70° और ∠BAC = 30° है |

अब, ∠BAC = ∠BDC [एक ही वृत्त खंड में बने कोण बराबर होते हैं]

इसलिए, ∠BDC = 30° (1)

अब DBCD में,

∠BDC = 30°, ∠DBC = 70° और ∠BCD = ?

अब ∠BDC + ∠DBC + ∠BCD = 180° [त्रिभुज के तीनों कोणों का योग]

या $30^{\circ} + 70^{\circ} + \angle BCD = 180^{\circ}$ समी \circ (1) से

या 100° + ∠BCD = 180°

या ∠BCD = 180° - 100°

या ∠BCD = 80°

अब, AB = BC दिया है

इसलिए, $\angle BAC = \angle BCA$ (2) [बराबर भुजाओं के सम्मुख कोण बराबर होते हैं]

अब चूँकि ∠BAC = 30° है |

इसलिए ∠BCA = 30° समी० (2) से

या ∠ECB = 30°

चूँकि ∠BCD = 80° है |

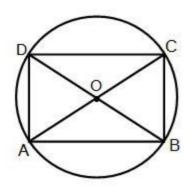
या ∠ECB + ∠ECD = 80°

या 30° + ∠ECD = 80°

या ∠ECD = 80° - 30°= 50°

अत: ∠ECD = 50° और ∠BCD = 80° है |

Q7. यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।



दिया है: ABCD एक चक्रीय चतुर्भुज है

जिसके विकर्ण AC तथा BD बिंदु O पर

प्रतिच्छेद करते हैं।

सिद्ध करना है : ABCD एक आयत है।

प्रमाण : $\triangle AOB$ तथा $\triangle COD$ में

OA = OC (एक ही वृत्त कि त्रिज्यायें)

OB = OD (एक ही वृत्त कि त्रिज्यायें)

∠AOB = ∠COD (शिर्षाभिमुख कोण)

SAS सर्वांगसमता नियम से

ΔAOB ≅ ΔCOD

अत: AB = CD(1) (By CPCT)

और ∠BAO = ∠DCO एकांतर कोण

अत: AB ∥ CD ...(2)

समी० (1) तथा (2) से

ABCD एक समांतर चतुर्भुज है।

अब BD विकर्ण वृत्त का ब्यास है (दिया है)

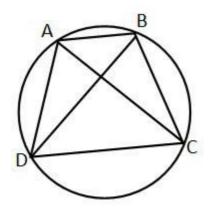
इसलिए $\angle A = 90^\circ$ तथा $\angle C = 90^\circ$ है। [अर्धवृत्त में बना कोण 90° होता है]

अत: ABCD एक आयात है।

(वह समांतर चतुर्भुज जिसका एक कोण समकोण हो वह आयत कहलाता है)

Q8. यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।

हल:



दिया है : ABCD एक समलंब है जिसमें

AB || CD है और AD = BC है |

सिद्ध करना है:

ABCD एक चक्रीय चतुर्भुज है |

प्रमाण: ∆ACD तथा ∆BDC में

AD = BC (दिया है)

DC = DC (दिया है)

∠DAC = ∠CBD (एक ही वृत्त खंड में बने कोण)

SAS सर्वांगसमता नियम से

ΔACD ≅ ΔBDC

अत: ∠D = ∠C (1) By CPCT

अब चूँकि AB ∥ CD दिया है

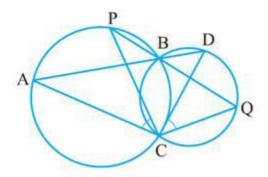
इसलिए, $\angle A + \angle D = 180^{\circ}$ (अत: आसन्न कोणों का योग)

या ∠A + ∠C = 180° समी० (1)से

अत: ABCD एक चक्रीय चतुर्भुज है | Proved

Q9. दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं। B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं। सिद्ध कीजिए कि \angle ACP = \angle QCD है |

हल:



सिद्ध करना है : $\angle ACP = \angle QCD$

प्रमाण:

चाप AP बने कोण ∠ABP तथा ∠ACP हैं |

अतः ∠ABP = ∠ACP(1) [एक ही वृत्त खंड में बने कोण]

अब, ∠ABP = ∠QBD(2) [शिर्षाभिमुख कोण]

समीकरण (1) तथा (2) से

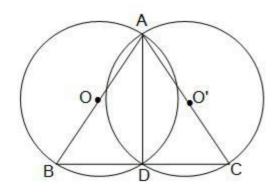
$$\angle ACP = \angle QBD \dots (3)$$

पुन: ∠QCD = ∠QBD(4) [एक ही वृत्त खंड में बने कोण]

अत: समीकरण (3) तथा (4) से

 $\angle ACP = \angle QCD$ **Proved**

Q10. यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।



दिया है: ABC एक त्रिभुज है जिसकी भुजाओं

AB तथा AC को व्यास मानकर O तथा O' वाले

दो वृत्त खिंचा है | उभयनिष्ठ जीवा AD है |

सिद्ध करना है: बिंदु D BC पर स्थित है |

प्रमाण : AB O केंद्र वाले वृत्त का व्यास है |

अतः $\angle ADB = 90^{\circ}$ (1) (अर्धवृत में बना कोण समकोण होता है)

अब, AC O' वाले वृत्त का व्यास है।

अतः $\angle ADC = 90^{\circ}$ (2) (अर्धवृत में बना कोण समकोण होता है)

समीकरण (1) तथा (2) जोड़ने पर

 $\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ}$

या ∠ADB + ∠ADC = 180° [रैखिक युग्म]

अतः BDC एक सरल रेखा है जिसपर बिंदु D स्थित है | Proved

∠∆≅

गणित

(अध्याय - 10)(वृत्त) (कक्षा - 9) प्रश्नावली 10.6 (ऐच्छिक)

सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों की केन्द्रों की रेखा दोनों प्रतिच्छेद बिन्दुओं पर समान कोण अंतरित करती है।

दिया है: वृत्त C (P, r) और वृत्त C (Q, r') एक दूसरे को A और B पर प्रतिच्छेद करते हैं।

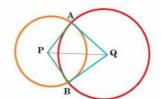
सिद्ध करना है: ∠PAQ = ∠PBQ है।

उपपत्ति: ΔAPQ और ΔBPQ में,

[: उभयनिष्ठ] PQ = PQ

[: एक ही वृत्त की त्रिज्याएँ] PA = PB[एक ही वृत्त की त्रिज्याएँ] QA = QB

अतः, $\triangle APQ \cong \triangle BPQ$ [॰ SSS सर्वांगसमता नियम] [: सर्वांगसम त्रिभुजों के संगत भाग बराबर होते हैं] अतः, ∠PAQ = ∠PBQ



प्रश्न 2:

एक वृत्त की 5 cm तथा 11 cm लम्बी दो जीवाएँ AB और CD समांतर हैं और केन्द्र की विपरीत दिशा में स्थित हैं। यदि AB और CD के बीच की दूरी 6 cm हो, तो वृत्त की त्रिज्या ज्ञात कीजिए।

दिया है: वृत्त C (O, r) में, AB = 5 cm, CD = 11 cm और AB || CD है।

ज्ञात करना है: वृत्त की त्रिज्या OA है।

रचना: OM ⊥ CD और ON ⊥ AB बनाया।

उपपत्ति: CD वृत्त की जीवा है और OM ⊥ CD

[: केन्द्र से जीवा पर डाला गया लम्ब उसे समद्विभाजित करता है] अतः, CM = MD = 5.5 cm

इसीप्रकार, AN = NB = 2.5 cm

माना, OM = x

इसलिए, ON = 6 - x[: MN = 6 cm]

ДОСМ में, पाइथागोरस प्रमेय से

 $OC^2 = CM^2 + OM^2$ तथा Δ OAN में, पाइथागोरस प्रमेय से $\frac{\Delta}{\Delta}$

 $OA^2 = AN^2 + ON^2$

समीकरण (1) और (2) से

 $CM^2 + OM^2 = AN^2 + ON^2$ [: OC = OA = वृत्त की त्रिज्या]

 $\Rightarrow (5.5)^2 + x^2 = (2.5)^2 + (6 - x)^2$

 \Rightarrow 30.25 + x^2 = 6.25 + (36 + x^2 - 12x)

 $\Rightarrow 30.25 - 42.25 = -12x$

 $\Rightarrow -12 = -12x$

$$\Rightarrow x = \frac{12}{12} = 1$$

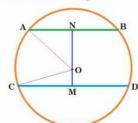
समीकरण (2) से

$$OC^2 = (5.5)^2 + 1^2 = 30.25 + 1 = 31.25 = \frac{3125}{100} = \frac{125}{4}$$

$$\Rightarrow OC = \sqrt{\frac{125}{4}} = \frac{5}{2}\sqrt{5}$$

$$\Rightarrow$$
 OA = OC = $\frac{5}{2}\sqrt{5}$ cm

अतः, वृत्त की त्रिज्या 5ू√5 cm है।



प्रश्न 3:

किसी वृत्त की दो समांतर जीवाओं की लम्बाइयाँ 6 cm और 8 cm हैं। यदि छोटी जीवा केन्द्र से 4 cm की दूरी पर हो, तो दूसरी जीवा केन्द्र से कितनी दूर है?

उत्तर 3:

दिया है: वृत्त C (0, r) में, AB = 8 cm, CD = 6 cm, OM = 4 cm और AB || CD है। ज्ञात करना है: OM की लंबाई। रचना: OM ⊥ CD और ON ⊥ AB बनाया। उपपत्ति: CD वृत्त की जीवा है और OM ⊥ CD केन्द्र से जीवा पर डाला गया लम्ब उसे समद्विभाजित करता है। अतः, CM = MD = 3 cm

इसीप्रकार, AN = NB = 4 cm

माना, MN = xइसलिए, ON = 4 - x

[: OM = 4 cm]

ΔΟCM में, पाइथागोरस प्रमेय से

 $OC^2 = CM^2 + OM^2 \qquad ... (1)$ तथा ΔOAN में, पाइथागोरस प्रमेय से

 $OA^2 = AN^2 + ON^2$

समीकरण (1) और (2) से

... (2)

 $CM^2 + OM^2 = AN^2 + ON^2$

[: OC = OA = वृत्त की त्रिज्या]

 $\Rightarrow 3^2 + 4^2 = 4^2 + (4 - x)^2$

 \Rightarrow 9 + 16 = 16 + 16 + x^2 - 8x

 $\Rightarrow x^2 - 8x + 7 = 0$

 $\Rightarrow x^2 - 7x - x + 7 = 0$

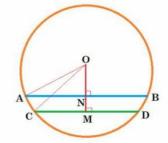
 $\Rightarrow x(x-7) - x(x-7) = 0$

 $\Rightarrow (x-1)(x-7) = 0$

 $\Rightarrow x - 7 = 0 \quad \forall I \quad x - 1 = 0$

 $\Rightarrow x = 7$ या x = 1

इसलिए, ON = 4 - x = 4 - 1 = 3 cmअतः, दूसरी जीवा केन्द्र से 3 cm दूर है।



$[\because x \neq 7 > OM]$

मान लीजिए कि कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त से बराबर जीवाएँ AD और CE कटती हैं। सिद्ध कीजिए कि ∠ABC जिवाओं AC तथा DE द्वारा केन्द्र पर अंतरित कोणों के अंतर का आधा है।

उत्तर 4:

दिया है: वृत्त C (0, r) में, AD = CE है।

सिद्ध करना है: $\angle ABC = \frac{1}{2}(\angle AOC - \angle DOE)$

रचना: AC और DE को मिलाया।

उपपत्ति: माना, $\angle AOC = x$, $\angle DOE = y$ और $\angle AOD = z$

इसलिए, $\angle EOC = z$

[: समान जिवाएँ केन्द्र पर बराबर कोण अंतरित करती हैं]

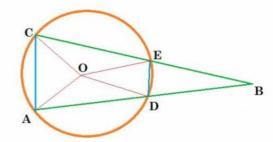
 $\angle AOC + \angle DOE + \angle AOD + \angle EOC = 360^{\circ}$

 $\Rightarrow x + y + z + z = 360^{\circ}$

 $\Rightarrow x + y + 2z = 360^{\circ}$ $\Delta OAD \stackrel{?}{H},$... (1)

OA = OD

[: वृत्त की त्रिज्याएँ]



```
[: समद्विभाहु त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं]
 \angle OAD = \angle ODA
 \angleOAD + \angleODA + \angleAOD = 180°
\Rightarrow 2\angle OAD + z = 180^{\circ}
\Rightarrow 2 \angle OAD = 180^{\circ} - z
                                            [\because \angle OAD = \angle ODA]
\Rightarrow \angle OAD = \frac{180^{\circ} - z}{2} = 90^{\circ} - \frac{z}{2} \dots (2)
इसीप्रकार,
\angle OCE = 90^{\circ} - \frac{z}{2}
\angle OED = 90^{\circ} - \frac{y}{2}
                                                ... (4)
 ∠ODB त्रिभुज OAD का बाह्य कोण है। अतः
 \angleODB = \angleOAD + \angleODA
⇒∠ODB = 90^{\circ} - \frac{z}{2} + z
⇒∠ODB = 90^{\circ} + \frac{z}{2}
                                               [: समीकरण (2) से]
इसीप्रकार, ∠obe त्रिभुज oce का बाह्य कोण है। अतः
 \angleOBE = \angleOCE + \angleOEC
⇒\angle0EB = 90° -\frac{z}{2} + z [∵ समीकरण (3) से]
\Rightarrow \angle OEB = 90^{\circ} + \frac{z}{2}
समीकरण (4), (5) और (6) से
 \angle BDE = \angle BED = \angle OEB - \angle OED
\Rightarrow \angle BDE = \angle BED = 90^{\circ} + \frac{z}{2} - \left(90^{\circ} - \frac{y}{2}\right) = \frac{y+z}{2}
\Rightarrow \angle BDE + \angle BED = y + z ... (7)
\triangle BDE + \angle BDE + \angle BED = 180^{\circ}
⇒\angleDBE + y + z = 180° [∵ समीकरण (7) से]
\Rightarrow \angle DBE = 180^{\circ} - (y + z)
⇒∠ABC = 180^{\circ} - (y + z) ... (8)

यहाँ, \frac{x-y}{2} = \frac{360^{\circ} - y - 2z - y}{2} [: समीकरण (1) से]

⇒ \frac{x-y}{2} = \frac{360^{\circ} - 2y - 2z}{2} = 180^{\circ} - (y + z) ... (9)
समीकरण (8) और (9) से
\angle ABC = \frac{x-y}{2} = \frac{1}{2} (\angle AOC - \angle DOE)
```

प्रश्न 5:

सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेद बिन्दु से होकर जाता है।

उत्तर 5:

दिया है: ABCD एक समचतुर्भु है।

सिद्ध करना है: AB को व्यास मानकर खींचा गया वृत्त विकर्णों के प्रतिच्छेद बिन्दु 0 से होकर जाता है।

उपपत्ति: ABCD एक समचतुर्भु है। अतः, ∠AOC = 90°

[: समचतुर्भुज के विकर्ण एक दूसरे को लम्ब समद्विभाजित करते हैं]

AB को व्यास मानकर खींचा गया वृत्त बिन्दु O से हो कर जाएगा।

[: अर्धवृत्त में बना कोण समकोण होता है]

अतः, समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेद बिन्दु से होकर जाता है।

प्रश्न 6:

ABCD एक समांतर चतुर्भुज है। A, B और C से जाने वाला वृत्त CD (यदि आवश्यक हो तो बढ़ाकर) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।

उत्तर 6:

दिया है: ABCD एक समांतर चतुर्भुज है। A, B और C से जाने वाला वृत्त बढ़ाई हुई भुजा CD को E पर प्रतिच्छेद करता है।

सिद्ध करना है: AE = AD है। उपपत्ति: ∠3 + ∠1 = 180°

... (1) [: रैखिक युग्म]

और ∠2 + ∠4 = 180°

... (2) [: चक्रीय चतुर्भुज के सम्मुख कोणों का योग 180° होता है]

तथा ∠3 = ∠4

... (3) [: समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं]

समीकरण (1) और (2) से, $\angle 3 + \angle 1 = \angle 2 + \angle 4$

 $\Rightarrow \angle 1 = \angle 2$

... (४) [: समीकरण (३) से]

 $\triangle AQB$ में, $\angle 1 = \angle 2$ इसलिए, AE = AD

[: समीकरण (4) से]

[: त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं]

AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित करती हैं। सिद्ध कीजिए कि:

(i) AC और BD व्यास हैं,

(ii) ABCD एक आयत है।

दिया है: AC और BD एक वृत्त की जीवाएँ हैं तथा AO = OC और BO = OD है।

सिद्ध करना है: AC और BD व्यास हैं और ABCD एक आयत है।

रचना: AB, BC, CD और DA को मिलाया।

उपपत्ति:

(i) ∆ABO और ∆CDO में,

🖙 दिया है। AO = OC

[: शीर्षाभिमुख कोण] $\angle AOB = \angle COD$

[: दिया है] BO = OD

[: SAS सर्वांगसमता नियम]

अतः, ∆AOB ≅ ∆COD ∠BAO = ∠DCO [: सर्वांगसम त्रिभुज के संगत भाग बराबर होते हैं]

∠BAO और ∠DCO एकांतर कोण हैं तथा बराबर हैं। अतः

... (1) AB || DC

इसीप्रकार,

AD || BC ... (2)

समीकरण (1) और (2) से, ABCD एक समांतर चतुर्भुज है।

 $\angle A + \angle C = 180^{\circ}$... (3) [\cdot चक्रीय चतुर्भुज के सम्मुख कोणों का योग 180° होता है]

... (4) [: समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं] तथा $\angle A = \angle C$

समीकरण (3) और (4) से

 $2\angle A = 180^{\circ}$

$$\Rightarrow \angle A = \frac{180^{\circ}}{2} = 90^{\circ}$$

⇒ BD वृत्त का व्यास है। [: अर्धवृत्त का कोण समकोण होता है]

इसीप्रकार, AC भी वृत्त का व्यास है।

(ii) ABCD एक समांतर चतुर्भुज है [: ऊपर सिद्ध किया गया है]

ऊपर सिद्ध किया गया है। $\angle A = 90^{\circ}$

 समांतर चतुर्भज, जिसका एक कोण समकोण हो, आयत होता है। अतः. ABCD एक आयत है।

प्रश्न 8:

एक त्रिभुज ABC के कोणों A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि त्रिभुज DEF के कोण $90^{\circ} - \frac{1}{2} \angle A$, $90^{\circ} - \frac{1}{2} \angle B$ तथा $90^{\circ} - \frac{1}{2} \angle C$ हैं।

दिया है: त्रिभुज ABC के कोणों A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं।

सिद्ध करना है: $\angle D = 90^{\circ} - \frac{1}{2} \angle A$, $\angle E = 90^{\circ} - \frac{1}{2} \angle B$ तथा $\angle F = 90^{\circ} - \frac{1}{2} \angle C$ हैं।

उपपत्ति: ∠1 और ∠3 एक ही वृत्तखंड में बने कोण हैं। अतः

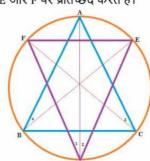
... (1) [: एक ही वृत्तखंड में बने कोण बराबर होते हैं] $\angle 1 = \angle 3$

इसीप्रकार $\angle 2 = \angle 4$...(2) समीकरण (1) और (2) को जोड़ने पर, $\angle 1 + \angle 2 = \angle 4 + \angle 3$

$$\Rightarrow \angle D = \frac{1}{2} \angle B + \frac{1}{2} \angle C \quad \Rightarrow \angle D = \frac{1}{2} (\angle B + \angle C)$$

$$\Rightarrow \angle D = \frac{1}{2}(180^{\circ} - \angle A) \Rightarrow \angle D = 90^{\circ} - \frac{1}{2}\angle A$$

इसीप्रकार, $\angle E = 90^{\circ} - \frac{1}{2} \angle B$ तथा $\angle F = 90^{\circ} - \frac{1}{2} \angle C$ हैं।



प्रश्न 9:

दो सर्वांगसम वृत्त परस्पर बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से होकर कोई रेखाखंड PAQ इस प्रकार खींचा गया है कि P और Q दोनों वृत्तों पर स्थित हैं। सिद्ध कीजिए कि BP = BQ है।

दिया है: दो सर्वांगसम वृत्त परस्पर बिन्दुओं A और B पर प्रतिच्छेद करते हैं।

सिद्ध करना है: BP = BQ है।

उपपत्ति: सर्वांगसम वृत्तों के चाप ADB और चाप AEB बराबर हैं। अतः

 $\angle APB = \angle AQB$

[: सर्वांगसम वृत्तों के समान चाप, बराबर कोण अंतरित करते हैं]

अतः, BP = BQ

[: त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।]

प्रश्न 10:

किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लम्ब समद्विभाजक प्रतिच्छेद करें। तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे।

उत्तर 10:

दिया है: त्रिभुज ABC में, ∠A का समद्विभाजक ABC के परिवृत्त को बिंदु D पर प्रतिच्छेद करता है।

सिद्ध करना है: D, BC के लम्ब समद्विभाजक पर स्थित है।

रचना: BD और DC को मिलाया।

उपपत्ति: ∠1 और ∠3 एक ही वृत्तखंड में बने कोण हैं। अतः

 $\angle 1 = \angle 3$

[: एक ही वृत्तखंड में बने कोण बराबर होते हैं]

इसीप्रकार $\angle 2 = \angle 4$... (2)

तथा, $\angle 1 = \angle 2$... (3) [ः दिया है]

समीकरण (1), (2) और (3) से, ∠3 = ∠4

[: त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं] अतः, BD = DC

BC के लम्ब समद्विभाजक पर स्थित सभी बिंदु B और C से संदूरस्थ होगें।

अतः, बिंदु D, BC के लंबसमद्विभाजक पर स्थित है।

