अध्याय
 परिमेय संख्याएँ (RATIONALNUMBERS)

1.1 भूमिका

गणित में प्रायः हमें साधारण समीकरण दिखाई देते हैं। समीकरणों में अज्ञात व चर की राशि संख्याओं के अलग-अलग समूहों में ज्ञात होती है।
उदाहरण स्वरूप सोचिए समीकरण $x+5=8$ में x के किस मान से समीकरण संतुष्ट होगा?

$$
\therefore x=8-5
$$

यहां समीकरण के लिए हल $x=3$ है जो कि एक प्राकृत संख्या है।

सोचिए समीकरण $x+10=10$ का हल

यहां समीकरण का हल $x=0$ है। x का यह मान एक पूर्ण संख्या है, यदि हम केवल प्राकृत संख्याओं तक सीमित रहते तो इस समीकरण को हल नहीं किया जा सकता।

आइए अब एक और समीकरण $x+15=7$ के लिए x का मान निकालें-
क्या समीकरण $x+15=7$ जैसे समीकरणों का हल पूर्ण संख्याओं (जो कि शून्य से शुरू होकर सारी धनात्मक संख्याऐं है) में मिलता है?

यहां $x=-8$, क्या x का यह मान एक पूर्ण संख्या है? नहीं यह एक ऋणात्मक पूर्णांक है।
कुछ और समीकरणों के बारे में विचार करते हैं जैसे-
(i) $\quad 4 x=5$ (ii) $5 x+8=0$

क्या आपको इन समीकरणों के लिए x का मान पूर्णांकों के समूह में मिलता है? हल करके देखिए।

समीकरण (i) में $x=\frac{5}{4}$ (ii) में $x=\frac{-8}{5}$ रखकर देखिए। यहां समीकरण को हल करने के लिए हमें परिमेय संख्याओं की आवश्यकता पड़ती है। हम पिछली कक्षाओं में परिमेय संख्याओं, भिन्नों व अन्य संख्याओं पर मूल संक्रियाओं को पढ़ चुके हैं यहां हम उन संख्याओं के कुछ गुण६ र्म खोजने पर संक्रियाओं का प्रयास करेंगे।
1.2 संख्याओं के गुण-धर्म
1.2.1 संवृत या संवरक नियम : (Closure law)

एक बार पुनः संक्षेप में पूर्ण संख्याओं और पूर्णांक संख्याओं के गुण-धर्म की चर्चा करते हैं।
(i) पूर्ण संख्याएं (Whole Numbers)

अ. योग (Addition): $8+15=23$

$$
14+7=
$$

\qquad

अतः पूर्ण संख्याएं योग के अन्तर्गत संवृत है। अर्थात् किन्हीं दो पूर्ण संख्याओं a तथा b के लिए $a+b$ सदैव एक पूर्ण संख्या है।

ब. व्यवकलन : $6-4=2 \quad 3-7=\ldots \ldots \ldots$ सोचिए कि $-1,-4$ किस संख्या
(Subtraction)
$4-5=-1$

अतः पूर्ण संख्या व्यवकलन के अन्तर्गत संवृत नहीं है। क्योंकि हर बार हमें पूर्ण संख्या प्राप्त नहीं होती है।
स. गुणन (Multiplication): $0 \times 4=0$, एक पूर्ण संख्या है।

$$
3 \times 5=15 \quad 2 \times 4=
$$

\qquad
अतः पूर्ण संख्या गुणन के अन्तर्गत संवृत है। व्यापक रूप में यदि दो पूर्ण संख्याएं a तथा b हो तो $a b$ भी एक पूर्ण संख्या है।
द. भाग (Division) : $4 \div 5=\frac{4}{5}$ यह एक पूर्ण संख्या नहीं है। $2 \div 4=$ \qquad
अतः पूर्ण संख्याएं भाग के अन्तर्गत संवृत नहीं है। $4 \div 2=$

स्वयं करके देखिए

- अलग-अलग पूर्ण संख्याऐं लेकर चारों संक्रियाओं के लिए संवृत गुण की पुष्टि कीजिए।
- प्राकृत संख्याओं के लिए सभी चार संक्रियाओं के अंतगृत संवृत गुण की जांच कीजिए।
सर्व शिक्षा — 2013-14 (निःशुल्क)
(ii) पूर्णांक (Integer):

अ. योग: $-8+5=-3$

$$
-7+(-4)=-11
$$

अतः पूर्णांक योग के अन्तर्गत संवृत हैं।

व्यापक रूप में किन्हीं दो पूर्णांकों a और b के लिए $a+b$ एक पूर्णांक है।
ब. व्यवकलन : $12-7=5$ एक पूर्णांक है। $(-9)-2=$ \qquad

$$
7-12=-5 \text { एक पूर्णांक है। } \quad-4-5=\ldots \ldots \ldots .
$$

अतः पूर्णांक व्यवकलन के अन्तर्गत संवृत है। व्यापक रूप से किन्हीं दो पूर्णांकों a तथा b के लिए $a-b$ एक पूर्णांक है।
स. गुणन : $5 \times 18=90$ एक पूर्णांक है। $-5 \times-4=$ \qquad $-8 \times 5=-40$ एक पूर्णांक है। $3 \times 7=\ldots \ldots$
अतः पूर्णांक गुणन के लिए संवृत है।
व्यापक रूप से किन्हीं दो पूर्णांकों a तथा b के लिए $a b$ भी एक पूर्णांक है।
द. भाग : $4 \div 5=\frac{4}{5}$ यह एक पूर्णांक नहीं है। अतः पूर्णांक भाग के अन्तर्गत संवृत नहीं है।

सोचिए- 5 परिमेय संख्याओं के समूह का एक सदस्य क्यों है?

जैसा कि हम जानते हैं कि ऐसी संख्या जो $\frac{p}{q}$ के रूप में हो या व्यक्त की जा सके,
परिमेय संख्याएँ कहलाती है। जहां p और q पूर्णांक है तथा $q \neq 0$ है। जैसे $0,-5, \frac{3}{5}, \frac{-7}{12}$ आदि। क्योंकि संख्याऐं $0,-5,7$ आदि को p / q के रूप में लिखा जा सकता है इसलिए ये भी परिमेय संख्याएँ है। आइए परिमेय संख्याओं में संवृत गुणधर्म को जाँचें-

अ. योग : $\frac{-2}{3}+\frac{5}{6}=\frac{-4+5}{6}=\frac{1}{6}$ एक परिमेय संख्या है।

$$
\frac{-4}{5}+\left(\frac{-3}{10}\right)=\frac{-8+(-3)}{10}=\frac{-11}{10} \text { एक परिमेय संख्या है। }
$$

अतः स्पष्ट है कि परिमेय संख्या योग के अन्तर्गत संवृत है। अर्थात् किन्हीं दो परिमेय संख्याओं a तथा b के लिए $a+b$ भी एक परिमेय संख्या है।

ब. व्यवकलन : $\frac{8}{3}-\frac{5}{6}=\frac{16-5}{6}=\frac{11}{6}$ एक परिमेय संख्या है।

$$
\begin{aligned}
& \frac{-7}{8}-\frac{5}{4}=\frac{-7-10}{8}=\frac{-17}{8} \text { एक परिमेय संख्या है। } \\
& \frac{5}{2}-\left(\frac{-7}{8}\right)=\ldots \text { (क्या यह एक परिमेय संख्या है?) }
\end{aligned}
$$

इस प्रकार हम पाते हैं कि परिमेय संख्याएं व्यवकलन के अन्तर्गत संवृत है। अर्थात् किन्हीं दो परिमेय संख्याओं a तथा b के लिए $a-b$ भी एक परिमेय संख्या है।

स. गुणनः $\frac{-4}{5} \times \frac{8}{3}=\frac{-32}{15}$ एक परिमेय संख्या है।

$$
\frac{-8}{7} \times \frac{-2}{5}=\frac{16}{35} \text { एक परिमेय संख्या है। }
$$

क्या $\frac{-2}{3} \times \frac{-3}{5}=\ldots$. (क्या इनका भी हल एक परिमेय संख्या है?)
स्पष्ट है कि परिमेय संख्याएँ गुणन के अन्तर्गत संवृत है। अर्थात् दो परिमेय संख्याएँ a तथा b के लिए $a \times b$ भी एक परिमेय संख्या है।

द. भाग: $\frac{-5}{4} \div \frac{5}{3}=\frac{-5}{4} \times \frac{3}{5}=\frac{-15}{20}$ एक परिमेय संख्या है।
क्या $\frac{15}{7} \div \frac{2}{5}=\ldots \ldots$. ?
(क्या इनका हल एक परिमेय संख्या है?)
अतः स्पष्ट है कि परिमेय संख्याएँ भाग के अन्तर्गत संवृत है। अर्थात् दो परिमेय

$$
\begin{aligned}
& \frac{1}{2} \div \frac{1}{2}=? \frac{1}{2} \text { में } \frac{1}{2} \text { कितनी बार }=1 \text { बार। } \\
& \text { या } \frac{1}{2} \div \frac{1}{2}=\frac{1}{2} \times 2=1
\end{aligned}
$$

सर्व शिक्षा - 2013-14 (नि:शुल्क)

संख्याएँ a तथा b के लिए $a \div b$ भी एक परिमेय संख्या है। लकिन हम जानते हैं कि किसी भी परिमेय संख्या a के लिए $a \div 0$ परिभाषित नहीं है। अतः परिमेय संख्याएँ भाग के अन्तर्गत संवृत नहीं है। तथापि यदि हम शून्य को शामिल नहीं करें तो शेष सभी परिमेय संख्याओं का समूह भाग के अन्तर्गत संवृत है।

स्वयं करक देखिए

निम्नलिखित सारणी में रिक्त स्थानों को हाँ/नहीं से भरें-

संख्याएँ	अन्तर्गत संव甘 है।			
	योग के	व्यवकलन के	गुणन के	भाग के
परिमेय संख्याएँ	हाँ	\cdots	\ldots	\ldots
पूर्णांक संख्याएँ	\cdots	\cdots	हाँ
पूर्ण संख्याएँ	नहीं
प्राकृत संख्याएँ	\cdots	नहीं	\cdots	\ldots

1.2.2 क्रम विनिमेयता (Commutative law)

(i) पूर्ण संख्याएँ (Whole Numbers)

अ. योग :
$5+7=12$
$3+8=11$
$0+6=$
$7+5=12$
$8+3=11$
$6+0=$
\qquad
\qquad
अतः दो पूर्ण संख्याओं के लिए योग का क्रमविनिमेय नियम सत्य है। व्यापक रूप में, यदि दो पूर्ण संख्याएँ a तथा b के लिए $a+b=b+a$ सत्य है।
ब. व्यवकलन:

$$
\begin{array}{ll}
8-2=6 & 4-6=. \\
2-8=-6 & 6-5=
\end{array}
$$

\qquad
\qquad
$\Rightarrow 8-2 \neq 2-8$ अतः दो पूर्ण संख्याओं के लिए व्यवकलन का क्रमविनिमेय नियम सत्य नहीं है। अर्थात् दो पूर्ण संख्या a तथा b के लिए $a-b \neq b-a$ होता है।
स.

$$
\begin{array}{rlrl}
\text { गुणा- } 5 \times 3 & =\ldots & 4 \times 6=\ldots \ldots . . \\
3 \times 5 & =15 & & 6 \times 4=24
\end{array}
$$

अतः दो पूर्ण संख्याओं के लिए गुणन का क्रमविनिमय नियम सत्य है।
$0 \times 5=$ \qquad व $5 \times 0=$ \qquad क्या यह क्रमविनिमेय नियम का पालन करते हैं?

अर्थात् दो पूर्ण संख्याएं a तथा b के लिए $a \times b=\mathrm{b} \times a$ गुणा का क्रमविनिमय नियम सत्य है।

द. भाग: $4 \div 5=\frac{4}{5}$ तथा

$$
5 \div 4=\frac{5}{4}
$$

$$
\text { क्या } \frac{4}{5}=\frac{5}{4} ?
$$

$\Rightarrow 4 \div 5 \neq 5 \div 4$
अतः दो पूर्ण संख्याओं के लिए भाग का क्रम विनिमेय नियम सत्य नहीं है। अर्थात् दो पूर्ण संख्याएँ a तथा b के लिए $a \div b \neq b \div a$ होता है।
(ii) पूर्णांक

अ. क्या $(-5)+(+4)=(+4)+(-5)$
योग: $(-5)+(+4)=-1$
(i)
$(5)+(-4)=$
क्या यह समान है?

पुन: $\quad(+4)+(-5)=-1$

$$
(-4)+(5)=\ldots \ldots
$$

अतः $(-5)+(+4)=(+4)+(-5)$
(ii) $(-3)+(-7)=$ \qquad

$$
(-7)+(-3)=\ldots \ldots
$$

अतः दो पूर्णांक संख्याओं के लिए योग का क्रमविनिमेय नियम सत्य है। अर्थात् दो पूर्णांक संख्याएँ a तथा b के लिए $a+b=b+a$ सत्य है।
ब. व्यवकलन :
पूर्णाकों के घटाव के लिए सोचते हैं। कोई भी दो पूर्णांक लीजिए व उन्हें घटाइए-

$$
(-8)-(+3)=-11
$$

(i) $(7)-(-3)=$ \qquad
पुन: $\quad(3)-(-8)=11$
$(-3)-(7)=$ \qquad
अतः दो पूर्णांक संख्याओं के लिए व्यवकलन का क्रमविनिमेय नियम सत्य नहीं है। अर्थात् दो पूर्णांक संख्याएँ a तथा b के लिए $a-b \neq b-a$ होता है।
स. गुणन :
$(-4) \times(+5)=-20$
$8 \times(-2)=\ldots \ldots$

पुनः क्रम बदल कर
$(5) \times(-4)=-20$
$(-2) \times 8=\ldots$.
अतः

$$
(-4) \times(+5)=(+5) \times(-4)
$$

अतः दो पूर्णांक संख्याओं के लिए गुणन का क्रम विनिमेय नियम सत्य है। अर्थात् दो पूर्णांक संख्याएँ a तथा b के लिए $a \times b=b \times a$ सत्य है।
सर्व शिक्षा — 2013-14 (निःशुल्क)

द. भाग : $(-5) \div(+2)=\frac{-5}{+2}=-\frac{5}{2}$

$$
(+2) \div(-5)=\frac{(+2)}{-5}=-\frac{2}{5}
$$

$$
\begin{aligned}
& 6 \div 2=\ldots \ldots \ldots . \\
& 2 \div 6=\ldots \ldots \ldots . \\
& (-3) \div 1=\ldots \ldots . . \\
& 1 \div(-3)=\ldots \ldots . .
\end{aligned}
$$

अतः $\quad-5 \div 2 \neq 2 \div(-5)$
अतः दो पूर्णांक संख्याओं के लिए भाग का क्रम विनिमेय नियम सत्य नहीं है। अर्थात् दो पूर्णांक संख्याएँ a तथा b के लिए $a \div b \neq b \div a$ होता है।
(iii) परिमेय संख्याएँ

अ. योग : $\frac{-5}{4}+\frac{7}{8}=$
$\frac{7}{8}+\left(\frac{-5}{4}\right)=$

$$
\frac{-10+7}{8}=\frac{-3}{8} \quad=\frac{7+(-10)}{8}=\frac{-3}{8}
$$

अत: $\frac{-5}{4}+\frac{7}{8}=\frac{7}{8}+\left(\frac{-5}{4}\right)$
पुनः एक अन्य उदाहरण लेते हैं:-

$$
\begin{aligned}
& \quad\left(\frac{-5}{8}\right)+\left(\frac{-13}{6}\right)=\frac{-15+(-52)}{24}=\frac{-15-52}{24}=\frac{-67}{24} \\
& \text { अब } \quad\left(\frac{-13}{6}\right)+\left(\frac{-5}{8}\right)=\frac{-52+(-15)}{24}=\frac{-52-15}{24}=\frac{-67}{24} \\
& \text { अत' } \quad \frac{-5}{8}+\frac{-13}{6}=\frac{-13}{6}+\frac{-5}{8}
\end{aligned}
$$

अतः स्पष्ट है कि दो परिमेय संख्याओं के लिए योग का क्रम विनिमेय नियम सत्य है। अर्थात् दो परिमेय संख्याएँ a तथा b के लिए $a+b=b+a$ सत्य है।

ब. व्यवकलन : $\frac{5}{4}-\left(\frac{-7}{16}\right)=\frac{20-(-7)}{16}=\frac{20+7}{16}=\frac{27}{16}$

क्रम बदलने पर $\frac{-7}{16}-\frac{5}{4}=\frac{-7-20}{16}=\frac{-27}{16}$
अत: $\quad \frac{5}{4}-\left(\frac{-7}{16}\right) \neq \frac{-7}{16}-\frac{5}{4}$
अतः परिमेय संख्याओं के लिए व्यवकलन क्रम विनिमेय नहीं है।
स. गुणन : $\frac{-6}{5} \times \frac{-3}{7}=\frac{18}{35} \quad \frac{-4}{9} \times \frac{5}{6}=\ldots \ldots .$.
क्रम बदलने पर $\frac{-3}{7} \times \frac{-6}{5}=\frac{18}{35}$

$$
\frac{5}{6} \times \frac{-4}{9}=
$$

अतः $\frac{-6}{5} \times \frac{-3}{7}=\frac{-3}{7} \times \frac{-6}{5}$ क्या $\frac{-4}{9} \times \frac{5}{6}=\frac{5}{6} \times \frac{-4}{9}$?
अतः परिमेय संख्याओं के लिए गुणा का क्रम विनिमेय नियम सत्य है। अर्थात् दो परिमेय संख्याएं a तथा b के लिए $a \times b=b \times a$ सत्य है।

द. भाग : $\frac{-4}{5} \div \frac{3}{7}=\frac{-4}{5} \times \frac{7}{3}=\frac{-28}{15}$

$$
\frac{3}{7} \div\left(\frac{-4}{5}\right)=\frac{3}{7} \times\left(\frac{-5}{4}\right)=\frac{-15}{28}
$$

अतः $\frac{-4}{5} \div \frac{3}{7} \neq \frac{3}{7} \div\left(\frac{-4}{5}\right)$
क्या $\frac{5}{7} \div \frac{3}{2}=\frac{3}{2} \div \frac{5}{7}$ है? हल करके देखिए।
अतः परिमेय संख्याओं के लिए भाग का क्रम विनिमेय नियम सत्य नहीं है। अर्थात् दो परिमेय संख्याएँ a तथा b के लिए $a \div b \neq b \div a$ होता है।
सर्व शिक्षा — 2013-14 (निःशुल्क)

स्वयं करके देखिए

निम्नलिखित सारणी को क्रमविनिमेयता नियम के लिए पूरा कीजिए-

संख्याएँ	योग के	व्यवकलन के	गुणन के	भाग के
परिमेय संख्याएँ	हाँ			
पूर्णांक		नहीं		
पूर्ण संख्याएँ				
प्राकृत संख्याएँ				

सारणी से देखकर बताओ किन संक्रियाओं में क्रम विनिमेयता नियम लागू होता है?

1.2.3 साहचर्यता या सहचारिता (Associative law)

(i) पूर्ण संख्याएँ

अ. योग
$(5+4)+6=9+\ldots \ldots .=\ldots \ldots$. साहचर्यता बदलने पर $5+(4+6)=5+(\ldots \ldots)=\ldots \ldots$.
अतः $\quad(5+4)+6=5+(4+6)$
अतः तीन पूर्ण संख्याओं के लिए योग का साहचर्यता सत्य है। अर्थात् तीन पूर्ण संख्याएँ a, b तथा c के लिए $(a+b)+c=a+(b+c)$ सत्य है।
ब. व्यवकलन : क्या $(7-8)-5=7-(8-5)$

$$
(7-8)-5=(-1)-5=
$$

$$
7-(8-5)=7-3=4
$$

$$
\text { अत: } \quad(7-8)-5 \neq 7-(8-5)
$$

अतः तीन पूर्ण संख्याओं के लिए व्यवकलन की साहचर्यता सत्य नहीं है। अर्थात् तीन पूर्ण संख्याएँ a, b तथा c के लिए $(a-b)-c \neq a-(b-c)$ होता है।
स. गुणन :
क्या $(5 \times 4) \times 6=5 \times(4 \times 6)$
$(5 \times 4) \times 6=(\ldots .) \times 6=$. और $5 \times(4 \times 6)=5 \times(24)=\ldots \ldots$.

अतः $(5 \times 4) \times 6=5 \times(4 \times 6)$
इसी प्रकार क्या $5 \times(4 \times 0)=(5 \times 4) \times 0$?

अतः तीन पूर्ण संख्याओं के लिए गुणन की साहचर्यता सत्य है।

$$
a, b \text { तथा } c \text { के लिए }(a \times b) \times c=a \times(b \times c) \text { होता है। }
$$

द. भाग:
क्या $(4 \div 5) \div 8=4 \div(5 \div 8)$

$$
(4 \div 5) \div 8=\frac{4}{5} \div 8=\frac{4}{5} \times \frac{1}{8}=\frac{4}{40}=\frac{1}{10}
$$

साहचर्यता बदलने पर :-

$$
4 \div(5 \div 8)=4 \div\left(\frac{5}{8}\right)=4 \times \frac{8}{5}=\frac{32}{5}
$$

अतः $\quad(4 \div 5) \div 8 \neq 4 \div(5 \div 8)$
इसे भी जाचिऐं क्या $12 \div(4 \div 2)=(12 \div 4) \div 2 \ldots \ldots$?
अतः तीन पूर्ण संख्याओं के लिए भाग साहचर्य नहीं है। पूर्ण संख्याएँ a, b तथा c के लिए $(a \div b) \div c \neq a \div(b \div c)$ होता है।
(iii) पूर्णांक:

तीन पूर्णांक $(-5),+4$ व (-2) के लिए अ. योग :
(नोटः- धन पूर्णाकां के लिए धन चिह्न लगाना सदैव आवश्यक नहीं परन्तु ऋण पूर्णाकों के लिए आवश्यक है)

$$
\begin{aligned}
& (-5+4)+(-2)=-1+(-2)=-3 \\
& -5+\{4+(-2)\}=-5+2=-3
\end{aligned}
$$

अतः $(-5+4)+(-2)=-5+\{4+(-2)\}$

अतः तीन पूर्णांक संख्याओं के लिए योग का साहचर्यता सत्य है। अर्थात् तीन पूर्णांक संख्याएं a, b तथा c के लिए $(a+b)+c=a+(b+c)$ योग साहचर्य नियम लागू है।

ब. व्यवकलन : पुनः पूर्णांक $-5,+4$ व -2 के घटाव के लिए

$$
\begin{aligned}
& (-5-4)-(-6)=-9+6=-3 \\
& -5-\{4-(-6)\}=-5-\{4+6\}=-5-10=-15
\end{aligned}
$$

$$
\text { अतः } \quad(-5-4)-(-6) \neq-5-\{4-(-6)\}
$$

अतः तीन पूर्णांक संख्याओं के लिए व्यवकलन का साहचर्यता सत्य नहीं है। अर्थात् तीन पूर्णांक संख्याएँ a, b तथा c के लिए $(a-b)-c \neq a-(b-c)$ व्यवकलन साहचर्य नियम लागू नहीं है।

स. गुणन :

$$
\begin{aligned}
& \{5 \times(-4)\} \times(-2)=-20 \times(-2)=40 \\
& 5 \times\{-4 \times(-2)\}=5 \times\{8\}=40
\end{aligned}
$$

अत: $\{5 \times(-4)\} \times(-2)=5 \times\{-4 \times(-2)\}$
अतः तीन पूर्णांक संख्याओं के लिए गुणन का साहचर्यता सत्य है। अर्थात् तीन पूर्णांक संख्याएँ a, b तथा c के लिए, $(a \times b) \times c=a \times(b \times c)$ गुणन साहचर्य नियम लागू हैं।
द. भाग :

$$
\begin{array}{ll}
(-5 \div 2) \div(-3) & -5 \div\{2 \div(-3)\} \\
=\frac{-5}{2} \times \frac{1}{-3}=\frac{-5}{-6}=\frac{5}{6} & =-5 \div\left\{\frac{2}{-3}\right\}=-5 \times \frac{-3}{2}=\frac{15}{2} \\
\Rightarrow & (-5 \div 2) \div(-3) \neq-5 \div\{2 \div(-3)\}
\end{array}
$$

अतः तीन पूर्णांक संख्याओं के लिए भाग का साहचर्यता सत्य नहीं है। अर्थात् तीन पूर्णांक संख्याएँ a, b तथा c के लिए $(a \div b) \div c \neq a \div(b \div c)$ भाग का साहचर्य नियम लागू नहीं है।
(iii) परिमेय संख्याएँ:

अ. योग :

$$
\begin{array}{ll}
\left(\frac{-5}{4}+\frac{3}{8}\right)+\frac{-7}{6} & \frac{-5}{4}+\left(\frac{3}{8}+\frac{-7}{6}\right) \\
=\left(\frac{-10+3}{8}\right)+\frac{-7}{6} & =\frac{-5}{4}+\left(\frac{9-28}{24}\right) \\
=\frac{-7}{8}+\frac{-7}{6} & =\frac{-5}{4}+\frac{-19}{24} \\
=\frac{-21+(-28)}{24} & =\frac{-30-19}{24} \\
=\frac{-49}{24} & =\frac{-49}{24} \\
\text { अत: }\left[\frac{-5}{4}+\frac{3}{8}\right]+\frac{-7}{6}=\frac{-5}{4}+\left[\frac{3}{8}+\frac{-7}{6}\right]
\end{array}
$$

$$
\text { क्या } \frac{-1}{3}+\left[\frac{2}{5}+\left(-\frac{1}{2}\right)\right]=\left[\left(\frac{-1}{3}\right)+\frac{2}{5}\right]+\left(\frac{-1}{2}\right) \text { ? करके देखिए। }
$$

अतः तीन परिमेय संख्याओं के लिए योग का साहचर्यता सत्य है। अर्थात् तीन परिमेय संख्याएँ a, b तथा c के लिए $(a+b)+c=a+(b+c)$ योग का साहचर्य नियम लागू है।
ब. व्यवकलनः

$$
\text { क्या } \begin{array}{rlr}
\left(\frac{-3}{8}-\frac{5}{4}\right)-\left(\frac{-2}{6}\right) & =\frac{-3}{8}-\left(\frac{5}{4}-\frac{-2}{6}\right) \\
=\left(\frac{-3-10}{8}\right)-\left(\frac{-2}{6}\right) & =\frac{-3}{8}-\left(\frac{15+4}{12}\right) \\
=\frac{-13}{8}-\frac{-2}{6} & =\frac{-3}{8}-\frac{19}{12} \\
=\frac{-39-(-8)}{24} & & =\frac{-47}{24} \\
=\frac{-31}{24} & & =\frac{-9-38}{8}-\left(\frac{5}{4}-\frac{-5}{6}\right)
\end{array}
$$

अतः परिमेय संख्याओं के लिए व्यवकलन की साहचर्यता सत्य नहीं है। अर्थात् तीन परिमेय संख्याएँ a, b तथा c के लिए $(a-b)-c \neq a-(b-c)$ व्यवकलन का साहचर्य नियम लागू नहीं होता है।
स. गुणन : आइए, हम गुणन के लिए साहचर्यता की जाँच करते हैं।

$$
\begin{array}{ll}
\left(\frac{-5}{8} \times \frac{7}{6}\right) \times \frac{-2}{5} & \frac{-5}{8} \times\left(\frac{7}{6} \times \frac{-2}{5}\right) \\
=\frac{-35}{48} \times \frac{-2}{5} & =\frac{-5}{8} \times \frac{-14}{30} \\
=\frac{70}{240} & =\frac{70}{240}
\end{array}
$$

अत: $\left(\frac{-5}{8} \times \frac{7}{6}\right) \times \frac{-2}{5}=\frac{-5}{8} \times\left(\frac{7}{6} \times \frac{-2}{5}\right)$
क्या $\left(\frac{10}{7} \times \frac{-5}{14}\right) \times \frac{3}{14}=\frac{10}{7} \times\left(\frac{-5}{14} \times \frac{3}{14}\right)$ है?
अतः हम पाते हैं कि परिमेय संख्याओं के लिए गुणन का साहचर्यता सत्य है। तीन परिमेय संख्याएँ a, b तथा c के लिए $(a \times b) \times c=a \times(b \times c)$ गुणन का साहचर्य लागू होता हैं। द. भाग :

$$
\begin{array}{c|l}
\left(\frac{1}{2} \div \frac{3}{4}\right) \div \frac{-5}{8} & \frac{1}{2} \div\left(\frac{3}{4} \div \frac{-5}{8}\right) \\
=\left(\frac{1}{2} \times \frac{4}{3}\right) \div \frac{-5}{8} & =\frac{1}{2} \div\left(\frac{3}{4} \times \frac{8}{-5}\right) \\
=\frac{4}{6} \times \frac{8}{-5}=\frac{32}{-30}=\frac{-32}{30} & =\frac{1}{2} \div \frac{24}{-20}=\frac{1}{2} \times \frac{-20}{24}=\frac{-20}{48} \\
\text { अतः }\left(\frac{1}{2} \div \frac{3}{4}\right) \div \frac{-5}{8} \neq \frac{1}{2} \div\left(\frac{3}{4} \div \frac{-5}{8}\right)
\end{array}
$$

अतः परिमेय संख्याओं के लिए भाग साहचर्यता नहीं है। अतः परिमेय संख्याएँ a, b तथा c के लिए $(a \div b) \div c \neq a \div(b \div c)$ भाग का साहचर्य नियम लागू नहीं है।

स्वयं करके देखिए

निम्नलिखित सारणी को पूरा करें (($\vee)$ लगाएं)

संख्याएँ	साहचर्य नियम के लिए सत्य है ।			
	योग के	व्यवकलन के	गुणन के	भाग के
परिमेय संख्याएँ				
पूर्ण संख्याएँ				
पूर्णांक				
प्राकृत संख्याएँ				

1.2.4 शून्य (0) की भूमिका

निम्नलिखित पर विचार कीजिए:

$$
\begin{array}{ll}
5+0=0+5=5 & \text { (शून्य का पूर्ण संख्या में जोड़) } \\
-5+0=0+-5=-5 & \text { (शून्य का पूर्णांक में जोड़) } \\
\frac{-5}{4}+0=0+\frac{-5}{4}=\frac{-5}{4} & \text { (शून्य को परिमेय संख्या में जोड़) }
\end{array}
$$

उपर्युक्त उदाहरणों से स्पष्ट है कि किसी पूर्ण संख्या, पूर्णांक तथा परिमेय संख्या में जब शून्य जोड़ा जाता है तो योगफल फिर से वही संख्या प्राप्त होती है।

व्यापक रूप से,

$$
\begin{array}{ll}
a+0=0+a=a & a=\text { पूर्ण संख्या } \\
b+0=0+b=b & b=\text { पूर्णांक } \\
c+0=0+c=c & c=\text { परिमेय संख्या }
\end{array}
$$

इस प्रकार उपर्युक्त सभी संख्याओं के योग के लिए शून्य एक योज्य तत्समक कहलाता है।
1.2.5 एक (1) की भूमिका

$$
\begin{array}{ll}
8 \times 1=1 \times 8=8 \\
-2 \times 1=1 \times(-2)=-2 & \text { (पूर्ण संख्या का } 1 \text { के } \\
\frac{-3}{5} \times 1=1 \times \frac{-3}{5}=\frac{-3}{5} & \text { (पूर्णांक } \times 1 \ldots)
\end{array}
$$

उपर्युक्त उदाहरणों से स्पष्ट है कि किसी पूर्ण संख्या, पूर्णांक तथा परिमेय संख्या में जब 1 से गुणा किया जाता है तो गुणनफल फिर से वही संख्या प्राप्त होती है, इस प्रकार 1 एक गुणात्मक तत्समक है।

1.2.6 योज्य प्रतिलोम (Additive inverse) :

पूर्णांकों को अध्ययन करते समय आपने पूर्णांकों के ऋणात्मक पाए हैं। 1 का ऋणात्मक क्या है? यह -1 है, क्योंकि $1+(-1)=(-1)+1=0$ है। अतः (-1) का ऋणात्मक क्या होगा? यह 1 होगा।

इसी प्रकार $2+(-2)=(-2)+2=0$
सर्व शिक्षा — 2013-14 (नि:शुल्क)

$$
\frac{3}{2}+\left(\frac{-3}{2}\right)=\left(\frac{-3}{2}\right)+\frac{3}{2}=0
$$

उपर के उदाहरणों में दोनों संख्याओं का योग शून्य है। जब दो संख्याओं का योग शून्य हो तो वे दोनों संख्याएं एक दूसरे की योज्य प्रतिलोम होती है जैसे उपर के उदाहरण में 1 का योज्य प्रतिलोम -1 तथा -1 का योज्य प्रतिलोम 1 है।

आप बताइए : 2 का योज्य प्रतिलोम क्या है?
व्यापक रूप से -5 का योज्य प्रतिलोम क्या है?

किसी भी परिमेय संख्या $\frac{c}{d}$ के लिए- $\frac{c}{d}+\left(\frac{-c}{d}\right)=\left(\frac{-c}{d}\right)+\frac{c}{d}=0$
प्राप्त होता है। इस प्रकार हम कह सकते हैं कि $\frac{c}{d}$ का योज्य प्रतिलोम $\frac{-c}{d}$ तथा $\frac{-c}{d}$ का योज्य प्रतिलोम $\frac{c}{d}$ है।
1.2.7 व्युत्क्रम अथवा गुणात्मक प्रतिलोम (Multiplicative inverse) :

निम्नलिखित उदाहरणों पर विचार करें:
(i) $2 \times \frac{1}{2}=1$
(ii) $\frac{3}{2} \times \frac{2}{3}=1$
(iii) $\frac{-5}{2} \times \frac{2}{-5}=1$

उपर्युक्त उदाहरणों में प्रत्येक का गुणनफल 1 है। जब दो संख्याओं का गुणनफल 1 हो तो वे दोनों संख्याएं एक दूसरे की व्युत्क्रम कहलाती है जैसे 2 का व्युत्क्रम $\frac{1}{2}$ व $\frac{1}{2}$ का व्युत्क्रम 2 है। इसी प्रकार $\frac{-5}{2}$ का व्युत्क्रम $\frac{2}{-5}$ है।

क्या आप बता सकते हैं कि शून्य का व्युत्त्रम क्या है? क्या कोई ऐसी संख्या है, जिसे शून्य से गुणा करने पर 1 प्राप्त हो जाए? अतः शून्य का कोई व्युत्क्रम नहीं है।

इस प्रकार हम कह सकते हैं कि एक परिमेय संख्या $\frac{a}{b}$ दूसरी परिमेय संख्या $\frac{b}{a}$ का व्युत्क्रम अथवा गुणात्मक प्रतिलोम कहलाती है, क्योंकि $\frac{a}{b} \times \frac{b}{a}=1$ है।
1.2.8 परिमेय संख्याओं के लिए गुणन की योग पर वितरण:

निम्नलिखित पर विचार करें--

$$
\begin{aligned}
& \frac{-2}{5} \times\left\{\frac{2}{7}+\frac{5}{14}\right\} \\
& =\frac{-2}{5} \times\left\{\frac{4+5}{14}\right\} \\
& =\frac{-2}{5} \times \frac{9}{14} \\
& =\frac{-18}{70}
\end{aligned}
$$

$$
\text { अतः } \frac{-2}{5} \times\left\{\frac{2}{7}+\frac{5}{14}\right\}=\left(\frac{-2}{5} \times \frac{2}{7}\right)+\left(\frac{-2}{5} \times \frac{5}{14}\right)
$$

इस उदाहरण में गुणन की व्यवकलन पर वितरण को समझिए।
सीधे तरीके से
वितरण नियम से

$$
\frac{-4}{5} \times\left\{\frac{2}{9}-\frac{7}{18}\right\} \quad \text { पुनः } \frac{-4}{5} \times\left\{\frac{2}{9}-\frac{7}{18}\right\}
$$

$$
=\frac{-4}{5} \times\left\{\frac{4-7}{18}\right\} \quad=\left(\frac{-4}{5} \times \frac{2}{9}\right)-\left(\frac{-4}{5} \times \frac{7}{18}\right)
$$

$$
=\frac{-4}{5} \times \frac{-3}{18}
$$

$$
=\frac{-8}{45}-\frac{-28}{90}
$$

$$
=\frac{12}{90} \quad=\frac{-16+28}{90}=\frac{12}{90}
$$

अतः $\frac{-4}{5} \times\left\{\frac{2}{9}-\frac{7}{18}\right\} \quad=\left(\frac{-4}{5} \times \frac{2}{9}\right)-\left(\frac{-4}{5} \times \frac{7}{18}\right)$
अतः उपर्युक्त उदाहरणों से स्पष्ट है कि परिमेय संख्याओं के लिए योग एवं व्यवकलन पर गुणन की वितरकता (वितरण) सत्य है।
सर्व शिक्षा - 2013-14 (निःशुल्क)

सभी परिमेय संख्याओं a, b और c के लिए

$$
\begin{aligned}
& a \times(b+c)=a \times b+a \times c \\
& a \times(b-c)=a \times b-a \times c
\end{aligned}
$$

स्वयं करके देखिए

वितरण नियम (वितरकता) के उपयोग से निम्नलिखित का मान ज्ञात करें:
(i) $\left(\frac{5}{4} \times \frac{-2}{8}\right)+\left(\frac{5}{4} \times \frac{-3}{5}\right)$
(ii) $\left(\frac{5}{8} \times \frac{-3}{7}\right)+\left(\frac{5}{8} \times \frac{-7}{6}\right)$

उदाहरण-1. मान ज्ञात करें $\frac{5}{12}+\frac{-3}{8}+\frac{-7}{16}+\frac{25}{12}$
हल : $\frac{5}{12}+\frac{-3}{8}+\frac{-7}{16}+\frac{25}{12}$
$=\frac{-3}{8}+\frac{-7}{16}+\frac{5}{12}+\frac{25}{12}$ (क्रम विनिमेयता के उपयोग से)
$=\left[\frac{-3}{8}+\frac{-7}{16}\right]+\left[\frac{5}{12}+\frac{25}{12}\right]$
$=\left[\frac{5+25}{12}\right]+\left[\frac{-6+(-7)}{16}\right]$
$=\frac{30}{12}+\frac{-13}{16}=\frac{120-39}{48}=\frac{81}{48}=\frac{27}{16}$
उदाहरण-2. हल करें- $\frac{-4}{5} \times \frac{16}{7}+\frac{3}{5} \times \frac{16}{7}$
हल : हमें प्राप्त है,

$$
\frac{-4}{5} \times \frac{16}{7}+\frac{3}{5} \times \frac{16}{7}
$$

$$
\begin{aligned}
& =\frac{16}{7}\left(\frac{-4}{5}+\frac{-3}{5}\right) \quad \text { बंटन नियम से } \\
& =\frac{16}{7}\left(\frac{-4+(-3)}{15}\right)=\frac{16}{7} \times \frac{-7}{15} \\
& =\frac{-16}{15}
\end{aligned}
$$

उदाहरण-3. निम्नलिखित के योज्य प्रतिलोम लिखिए:
(i) $\frac{-9}{13}$
(ii) $\frac{12}{25}$

हल : (i) $\frac{-9}{13}$ का योज्य प्रतिलोम $\frac{9}{13}$ है क्योंकि $\frac{-9}{13}+\frac{9}{13}=\frac{-9+9}{13}=\frac{0}{13}=0$
(ii) $\frac{12}{25}$ का योज्य प्रतिलोम $\frac{-12}{25}$ है क्योंकि $\frac{12}{25}+\frac{-12}{25}=\frac{12-12}{25}=\frac{0}{25}=0$ उदाहरण-4. हल कीजिए $\frac{2}{7} \times \frac{-3}{5}-\frac{1}{12}-\frac{3}{5} \times \frac{4}{7}$

हल : $\frac{2}{7} \times \frac{-3}{5}-\frac{1}{12}-\frac{3}{5} \times \frac{4}{7}$
$=\frac{2}{7} \times \frac{-3}{5}-\frac{3}{5} \times \frac{4}{7}-\frac{1}{12}$
$=\frac{-3}{5}\left(\frac{2}{7}+\frac{4}{7}\right)-\frac{1}{12} \quad$ (वितरण नियम से)
$=\frac{-3}{5}\left(\frac{2+4}{7}\right)-\frac{1}{12}$
$=\frac{-3}{5} \times \frac{6}{7}-\frac{1}{12}=\frac{-18}{35}-\frac{1}{12}$
$=\frac{-216-35}{420}=\frac{-251}{420}$

> सर्व शिक्षा — 2013-14 (नि:शुल्क)

प्रश्नावली - 1.1

1. निम्नलिखित में से प्रत्येक के योज्य प्रतिलोम लिखिए:
(i) $\frac{2}{3}$
(ii) $\frac{25}{9}$
(iii) -16
(iv) $\frac{-15}{8}$
(v) 0
(vi) $\frac{-5}{-7}$
(vii) $\frac{13}{-5}$
(viii) $\frac{-2}{15}$
2. निम्नलिखित सारणी के खाली स्थान को भरिए:

संख्या	-13	$\frac{5}{4}$	$\frac{4}{-7}$	$\frac{-5}{-8}$	-1
गुणन प्रतिलोम	$\frac{1}{-13}$	$\ldots \ldots$	$\ldots .$.	$\ldots .$.	$\ldots .$.

3. उचित गुण धर्मों के उपयोग से निम्नलिखित का मान ज्ञात कीजिए-
(i) $\frac{4}{3}+\frac{3}{5}+\frac{-2}{3}+\frac{-11}{5}$
(ii) $\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$
4. $\frac{5}{18}$ को $\frac{-7}{72}$ के व्युत्क्रम से गुणा कीजिए।
5. $\frac{-1}{3} \times\left(\frac{1}{2}+\frac{1}{4}\right)=\left(\frac{-1}{3} \times \frac{1}{2}\right)+\left(\frac{-1}{3} \times \frac{1}{4}\right)$ के रूप में कौन-सा गुणधर्म है। बताइए।
6. क्या $-1 \frac{1}{8}$ का गुणात्मक प्रतिलोम $\frac{8}{9}$ है? कारण सहित उत्तर दीजिए।
7. क्या $3 \frac{1}{3}$ का गुणात्मक प्रतिलोम 0.3 है? क्यों अथवा क्यों नहीं?
8. निम्नलिखित को वितरण नियम की सहायता से हल कीजिए।
(i) $\frac{-3}{4} \times\left\{\frac{2}{3}+\left(\frac{-5}{6}\right)\right\}$
(ii) $\frac{5}{6} \times\left(\frac{-2}{5}+\frac{3}{10}\right)$
9. निम्नलिखित कॉलम "अ" को कॉलम "ब"" के उचित नियम से मिलाएंकॉलम "'अ" उदाहरण
(i) $\left(-\frac{1}{2}\right)+\frac{3}{4}=\frac{3}{4}+\left(-\frac{1}{2}\right)$
(ii) $\frac{5}{6} \times \frac{4}{7}=\frac{4}{7} \times \frac{5}{6}$
(b) गुणात्मक तत्समक
(iii) $\left(\frac{-1}{2}+\frac{2}{5}\right)+\frac{3}{10}=\frac{-1}{2}+\left(\frac{2}{5}+\frac{3}{10}\right)$
(iv) $\frac{1}{4}+\frac{3}{8}=\frac{5}{8}$
(v) $\left(5 \times \frac{1}{2}\right) \times \frac{3}{4}=5 \times\left(\frac{1}{2} \times \frac{3}{4}\right)$
(e) वितरण नियम
(vi) $\frac{-5}{4}+0=\frac{-5}{4}$
(f) संवरक नियम
(vii) $\frac{-8}{3} \times 1=\frac{-8}{3}$
(g) गुणात्मक प्रतिलोम
(viii) $\frac{5}{2} \times\left(\frac{1}{3}+\frac{2}{5}\right)=\left(\frac{5}{2} \times \frac{1}{3}\right)+\left(\frac{5}{2} \times \frac{2}{5}\right)$
(h) योग का साहचर्य नियम
(ix) $\frac{5}{3} \times \frac{3}{5}=1$
(i) गुणा का क्रम विनिमय नियम
(x) $\frac{-7}{4}+\frac{7}{4}=0$
(j) योग का क्रम विनिमय नियम

हमने सीखा

1. संख्याओं के परिवार में पहला प्राकृत संख्याएं $(1,2,3,4,5 \ldots .$.$) है। प्राकृत संख्या के$ परिवार में शून्य (0) शामिल होने पर पूर्ण संख्याओं ($0,1,2,3,4 \ldots .$.$) का परिवार बनता$ है तथा पूर्ण संख्याओं के परिवार में ऋणात्मक संख्याओं $(-1,-2,-3 \ldots)$ के जुड़ने पर पूर्णांक बनता है। पूर्णांकों के समूह में भिन्न संख्याओं को जोड़ने पर परिमेय संख्याएं बनती हैं।
2.

संवती है।
3. परिमेय संख्याओं के लिए योग और गुणन की संक्रियाएँ- (i) क्रमविनिमेय है (ii) साहचर्य है।
4. परिमेय संख्याओं के लिए परिमेय संख्या शून्य योज्य तत्समक है।
5. परिमेय संख्याओं के लिए परिमेय संख्या एक गुणात्मक तत्समक है।
6. परिमेय संख्या $\frac{a}{b}$ का योज्य प्रतिलोम $-\frac{a}{b}$ है और विलोमतः भी सत्य है ।
7. यदि $\frac{a}{b} \times \frac{c}{d}=1$ तो परिमये संख्या $\frac{a}{b}$ का व्युत्क्रम अथवा गुणात्मक प्रतिलोम $\frac{c}{d}$ है।
8. परिमेय संख्याओं की वितरकता (वितरण नियम) :

परिमेय संख्याएँ a, b और c के लिए $a(b+c)=a b+a c$ और $a(b-c)=a b-a c$ है।
9. गणितीय संक्रियाओं में गुणधर्मों का उपयोग करना।

