समरूपता

Ex 11.1

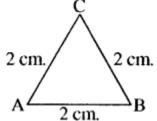
प्रश्न 1. रिक्त स्थानों की पूर्ति कीजिए

- (i) सभी वृत्त होते हैं।
- (ii) सभी वर्ग होते हैं।
- (iii) सभी त्रिभुज समरूप होते हैं।
- (iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं यदि
- (a) (b)

हल: (i) समरूप

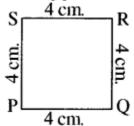
- (ii) समरूप
- (iii) समबाहु
- (iv)
- (a) उनके संगत कोण बराबर हों।
- (b) उनकी संगत भुजाएँ समानुपाती हों।

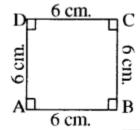
प्रश्न 2. निम्न कथन में सत्य व असत्य बताइए


- 1. दो सर्वांगसम आकृतियाँ समरूप होती हैं।
- 2. दो समरूप आकृतियाँ सर्वांगसम होती हैं।
- 3. दो बहुभुज समरूप होते हैं यदि उनकी संगत भुजाएँ समानुपाती हों।
- 4. दो बहुँभुँज समरूप होते हैं यदि उनकी संगत भुँजाएँ समानुपाती एवं संगत कोण बराबर हों।
- 5. दो बहुभुज समरूप होते हैं यदि उनके संगत कोण बराबर हों।

हल:

- 1. सत्य
- 2. असत्य
- 3. असत्य (क्योंकि केवल संगत भुजाओं का समानुपाती होना पर्याप्त नहीं है)
- 4. सत्य
- 5. असत्य।


प्रश्न 3. समरूप आकृतियों के कोई दो उदाहरण आकृति बनाकर दीजिए।


हल: दोनों त्रिभुज समरूप हैं, क्योंकि उनके संगत कोण बराबर हैं। तथा संगत भुजायें समानुपाती हैं।<

1. दोनों चतुर्भुज समरूप हैं क्योंकि उनके संगत कोण बराबर हैं तथा संगत भुजायें समानुपाती हैं।<

Ex 11.2

प्रश्न 1. △ABC की भुजाएँ AB व AC पर क्रमशः D व E बिन्दु इस प्रकार स्थित हैं कि DE || BC हो तो

(i) यदि AD = 6 सेमी., DB = 9 सेमी. और AE = 8 सेमी. हो तो || AC का मान ज्ञात कीजिए।

(ii) यदि $\frac{AD}{DB} = \frac{4}{13}$ और AC = 20.4 सेमी. हो तो EC का मान ज्ञात कीजिए।

(iii) $\frac{AD}{DB} = \frac{7}{4}$ और AE = 6.3 सेमी. हो तो AC का मान ज्ञात कीजिए।

(iv) यदि AD = 4x − 3, AE = 8x − 7, BD = 3 − 1 और CE = 5x − 3 हो तो x का मान ज्ञात कीजिए।

हल: (i) AAIBC में DE || BC दिया गया है अतः

 $\frac{\hat{A}D}{DB} = \frac{AE}{EC}$ (आधारभूत अनुपातिकता प्रमेय से)

$$\frac{6}{9} = \frac{8}{EC}$$

∴ EC = 9 × 8 = 3 × 4 = 12 सेमी.

 \therefore AC = AE + EC

= 8 + 12

= 20 सेमी.

(ii) △ABC में DE || BC दिया गया है अतः

$$\frac{\dot{A}\dot{D}}{DB} = \frac{\dot{A}\dot{E}}{EC} = \frac{\dot{A}\dot{E}}{AC-AE}$$

$$\frac{4}{41.13} = \frac{AE}{20.4-AE}$$

या, 13AE= 4 (20.4 – AE):

या, 13AE = 4 × 20.4 – 4AE

या, 13AE + 4 AE = 4 × 20.4

या, 17AE= 4 × 20.4

$$\therefore$$
 AE = $\frac{4 \times 20.4}{17}$ = 4 × 1.2 = 4.8 सेमी.

$$\therefore$$
 EC = AC – AE

(iii) AABC में DE || BC दिया गया है अतः

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\frac{7}{4} = \frac{6.3}{EC}$$

$$17EC = 4 \times 6.3$$

$$\therefore$$
 EC = $\frac{4 \times 6.3}{7}$ = 4 × 9 = 3.6 सेमी.

(iv) AABC में DE || BC दिया गया है अतः

 $\frac{ ext{AD}}{ ext{DB}} = \frac{ ext{AE}}{ ext{EC}}$ (आधारभूत अनुपातिकता प्रमेय से) प्रश्नानुसार $\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$

प्रश्नानुसार
$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

या
$$(4-3)(5x-3) = (3x-1)(8Y-7)$$

या
$$24 - 20 - 29x + 27x + 7 - 9 = 0$$

या
$$4 - 2x - 2 = 0$$

या
$$4 - 4x + 2 - 2 = 0$$

$$4x(x-1) + 2(x-1) = 0$$

$$(x-1)(4x+2)=0$$

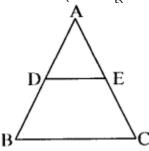
$$\therefore x = 1$$

$$4x = -2$$

$$x = -\frac{2}{4} = -\frac{1}{2}$$

$$\therefore \quad x = -\frac{1}{2}$$

$$x = -\frac{1}{2}$$


प्रश्न 2. △ABC की भुजाएँ AB एवं AC पर क्रमशः D व E दो बिन्दु स्थित हैं, निम्न प्रश्नों में दिये गये मानों के माध्यम से DE || BC होने एवं नहीं होने की जानकारी दीजिए।

- (i) AB = 12 सेमी., AD = 8 सेमी., AE = 12 सेमी. और AC = 18 सेमी.
- (ii) AB = 5.6 सेमी., AD = 1.4 सेमी., AC = 9.0 सेमी. तथा AE = 1.8 सेमी.
- (iii) AD = 10.5 सेमी., BD = 4.5 सेमी., AC = 4.8 सेमी. तथा AE = 2.8 सेमी.
- (iv) AD = 5.7 सेमी., BD = 9.5 सेमी., AE = 3.3 सेमी. तथा EC = 5.5 सेमी.

हल: (i) दिया है कि AABC की भूजाओं AB एवं AC पर क्रमश: D व E दो बिन्दु स्थित हैं अतः AB = 12 सेमी., AD = 8 सेमी., AE = 12 सेमी. और AC = 18 सेमी.

हम जानते हैं कि

 $rac{ ext{AD}}{ ext{BD}} = rac{ ext{AE}}{ ext{EC}}$ (आधारभूत आनुपातिकता प्रमेय से)

तथा EC = AC - AE = 18 - 12 = 6 सेमी.

$$\therefore \frac{AD}{BD} = \frac{8}{4} = 2$$
 सेमी.(1)

$$\therefore \frac{AD}{BD} = \frac{8}{4} = 2$$
 सेमी.(1) तथा $\frac{AE}{EC} = \frac{12}{6} = 2$ सेमी. ...(2)

$$(1)$$
 व (2) से $\frac{AD}{BD} = \frac{AE}{EC}$

DE || BC

(आधारभूत आनुपातिको प्रमेय के विलोम से)

(ii) AB = 5.6 सेमी., AD = 1.4 सेमी., AC = 9.0 सेमी. तथा AE = 1.8 सेमी.

$$\cdot \cdot \cdot$$
 BD = AB - AD = 5.6 - 1.4 = 4.2 सेमी.

तथा
$$EC = AC - AE = 9.0 - 1.8 = 7.2$$
 सेमी.

$$\therefore \frac{AD}{BD} = \frac{1.4}{4.2} = \frac{14}{42} = \frac{1}{3} \text{ सेमी}. \qquad(3)$$

 $\frac{AE}{EC} = \frac{1.8}{7.2} = \frac{18}{72} = \frac{1}{4}$ सेमी.

∴ (3) व (4) से

$$\frac{AD}{BD} \neq \frac{AE}{EC}$$

: DE, BC के समान्तर नहीं है।

(iii) AD = 10.5 सेमी., BD = 4.5 सेमी., AC = 4.8 सेमी. तथा AE = 2.8 सेमी.

यहाँ
$$EC = AC - AE = 4.8 - 2.8 = 2$$
 सेमी.

अब
$$\frac{AD}{BD} = \frac{10.5}{4.5} = \frac{105}{45} = \frac{7}{3}$$
 सेमी.(5)

तथा
$$\frac{AE}{EC} = \frac{2.8}{2} = \frac{28}{20} = \frac{7}{5}$$
 सेमी.(6)

समीकरण (5) व (6) से

$$\frac{AD}{BD} \neq \frac{AE}{EC}$$

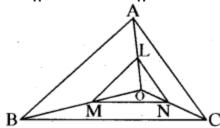
.: DE, BC के समान्तर नहीं है।

(iv) AD = 5.7 सेमी., BD = 9.5 सेमी., AE = 3.3 सेमी., EC = 5.5 सेमी.

$$\frac{AD}{BD} = \frac{5.7}{9.5} = \frac{3}{5} \text{ सेमी}.$$
(7)

तथा

$$\frac{AE}{EC} = \frac{3.3}{5.5} = \frac{3}{5}$$
 सेमी.


समीकरण (7) व (8) से

$$\frac{AD}{BD} = \frac{AE}{EC}$$

आधारभूत आनुपातिक प्रमेय के विलोम से

- ⇒ DE || BC
- ⇒ DE भुजा BC के समान्तर है।

प्रश्न 3. दी गई आकृति में OA, OB और OC पर क्रमशः L, M एवं N बिन्दु इस प्रकार स्थित हैं कि LM || AB तथा MN || BC है तो दर्शाइए LN || AC है।

हल: दिया है-

∆ABC में बिन्दु L, M एवं N क्रमशः OA, OB तथा OC भुजाओं पर इस प्रकार स्थित हैं कि LM || AB तथा MN || BC.

सिद्ध करना है-

LN || AC

उपपंत्ति-

∆OAB में LM || AB (दिया है)

$$\therefore \frac{OL}{AL} = \frac{OM}{BM} (आधारभूत आनुपातिक प्रमेय से)(i)$$

पुन: ΔOBC में MN∥BC (दिया है)

∴
$$\frac{OM}{BM} = \frac{ON}{CN}$$
 (आधारभूत आनुपातिक प्रमेय से).....(ii)

(i) व (ii) से
$$\frac{ON}{CN} = \frac{OL}{AL}$$

.. आधारभूत आनुपातिक प्रमेय के विलोम से

ΔOAC में LN || AC है। (इतिसिद्धम्)

प्रश्न 4. △ABC में AB व AC भुजाओं पर क्रमशः D और E बिन्दु इस प्रकार स्थित हैं कि BD = CE है। यदि ZB =∠C हो तो दर्शाइए DE || BCI

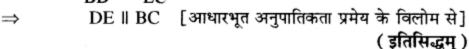
हल: △ABC में दिया है कि ∠B = ∠C

$$\Rightarrow$$
 AC = AB

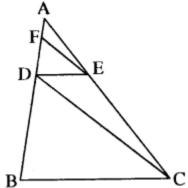
[: समान कोणों के सम्मुख भुजाएँ भी समान होती हैं।]

$$\Rightarrow$$
 AE + EC = AD + BC

$$\Rightarrow$$
 AE + CE = AD + BD


$$\Rightarrow$$
 AE + CE = AD + CE [$\cdot \cdot \cdot$ BD = CE]

$$\Rightarrow$$
 AE = AD


अत: AD = AE तथा BD = CE

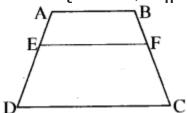
$$\therefore \frac{AD}{BD} = \frac{AE}{CE}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AE}{EC}$$

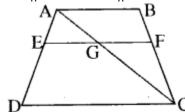
प्रश्न 5. आकृति में DE || BC और CD || EF हो तो सिद्ध कीजिए AD² = AB × AF

हल: ΔABC में दिया है कि DE || BC हैं।

$$\therefore \frac{AB}{AD} = \frac{AC}{AE} \qquad \dots (i)$$


∧ADC में दिया है कि FE || DC है।

$$\therefore \frac{AD}{AF} = \frac{AC}{AE} \qquad(ii)$$


(i) व (ii) से
$$\frac{AB}{AD} = \frac{AD}{AF}$$

 $\Rightarrow AD^2 = AB \times AF$

$$\Rightarrow$$
 AD² = AB × AF (इतिसिद्धम्)

प्रश्न 6. आकृति में यदि EF || DC || AB हो तो सिद्ध कीजिए कि $^{
m AE}_{
m ED}=^{
m BF}_{
m FC}$

हल: A और C को मिलाएँ जो EF को G पर प्रतिच्छेद करे (देखिए आकृति)। AB || DC और EF || AB (दिया है)

इसलिए EF || DC (एक ही रेखा के समान्तर रेखाएँ परस्पर समान्तर होती हैं) अब ΔADC में, EG || DC (PTF EF || DC)

अतः $\frac{AE}{ED} = \frac{AG}{GC}$ (प्रमेय 6.1 के अनुसार)(i)

इसीप्रकार ACAB में

$$\frac{CG}{AG} = \frac{CF}{BF}$$

अर्थात्

$$\frac{AG}{GC} = \frac{BF}{FC}$$

अत: (i) और (ii) से,

$$\frac{AE}{ED} = \frac{BF}{FC}$$
 (इतिसिद्धम्)

प्रश्न 7. ABCD पर समान्तर चतुर्भुज है, जिसकी भुजा BC पर कोई बिन्दु P स्थित है। यदि DP एवं AB को आगे बढ़ाएँ तो वे L पर मिलते हैं। तो सिद्ध कीजिए

....(ii)

$$\frac{\mathrm{DP}}{\mathrm{(i)}} = \frac{\mathrm{DC}}{\mathrm{BL}}$$

$$(ii) \frac{DL}{DP} = \frac{AL}{DC}$$

हल: दिया है-

एक समान्तर चतुर्भुज ABCD है जिसकी भुजा BC पर बिन्दु P इस प्रकार है कि बढ़ी हुई DP भुजा AB को बिन्दु L पर काटती है।

सिद्ध करना है-

$$(i) \frac{DP}{PL} = \frac{DC}{BL}$$

$$(ii) \frac{DL}{DP} = \frac{AL}{DC}$$

उपपत्ति-

(i) स्पष्ट है कि AALD) में BP || AD है। अतः आधारभूत Aअनुपातिकता प्रमेय से

$$\frac{BL}{AB} = \frac{PL}{DP}$$

$$\Rightarrow \frac{BL}{DC} = \frac{PL}{DP}$$

[∵ ABCD एक llgm है। अत: AB = DC]

$$\Rightarrow$$
 $\frac{DP}{PL} = \frac{DC}{BL}$ [दोनों पक्षों का व्युत्क्रम लेने पर]

(ii) हम यह सिद्ध कर चुके हैं कि
$$\frac{DP}{PL} = \frac{DC}{BL}$$
 [(i) से]

$$\Rightarrow \frac{PL}{DP} = \frac{BL}{DC}$$
 [दोनों पक्षों का व्युत्क्रम लेने पर]

$$\Rightarrow \frac{PL}{DP} = \frac{BL}{AB} \qquad [\because DC = AB]$$

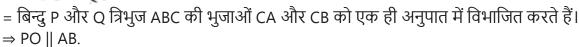
$$\Rightarrow$$
 $\frac{PL}{DP} + 1 = \frac{BL}{AB} + 1$ [दोनों पक्षों में 1 जोड़ने पर]

$$\Rightarrow \frac{PL + DP}{DP} = \frac{BL + AB}{AB}$$

$$\Rightarrow \frac{DL}{DP} = \frac{AL}{AB}$$

$$\Rightarrow$$
 $\frac{DL}{DP} = \frac{AL}{DC}$ [∵ AB = DC] (इतिसिद्धम्)

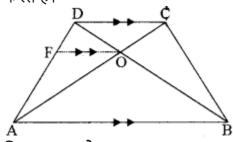
प्रश्न 8. AABC की भुजी AB पर D और E दो ऐसे बिन्दु स्थित हैं कि AD = BE हो। यदि DP || BC तथा EQ || AC हो तो सिद्ध कीजिए PQ || AB।


हल: ДАВС में दिया है कि DP || BC और EQ || AC

$$\therefore \frac{AD}{DB} = \frac{AP}{PC}$$
 तथा $\frac{BE}{EA} = \frac{BQ}{QC}$

$$\Rightarrow$$
 $\frac{AD}{DB} = \frac{AP}{PC}$ और $\frac{AD}{DB} = \frac{BQ}{QC}$

$$\begin{bmatrix} EA = ED + DA = ED + BE = BD \\ \therefore AD = BE \end{bmatrix}$$


$$\Rightarrow \frac{AP}{PC} = \frac{BQ}{QC}$$

प्रश्न 9. \triangle BCD एक समलम्ब चतुर्भुज है जिसकी AB || DC है तथा इसके विकर्ण o पर प्रतिच्छेद करते हैं। दर्शाइए $\frac{AO}{BO}=\frac{CO}{DO}$

हल: दिया है-

ABCD एक समलम्ब चतुर्भुज है जिसमें AB || DC है। विकर्ण AC तथा BD परस्पर बिन्दु 0 पर प्रतिच्छेद करते हैं।

सिद्ध करना है-

$$\frac{AO}{BO} = \frac{CO}{DO}$$

रचना-

O में से FO || DC || AB खींचिए। उपपत्ति-

प्रश्न 10. यदि D और E क्रमशः AB और AC, त्रिभुज ABC की भुजाओं पर स्थित ऐसे बिन्दु हैं कि BD = CE हो तो सिद्ध कीजिए AABC एक समद्विबाहु त्रिभुज है।

हल: त्रिभुज ABC में,

$$\frac{AD}{DB} = \frac{AE}{CE}$$

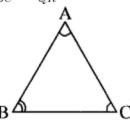
$$\Rightarrow \frac{AD}{DB} + 1 = \frac{AE}{CE} + 1$$

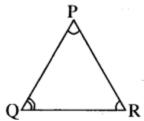
$$\Rightarrow \frac{AD + DB}{DB} = \frac{AE + CE}{CE}$$

$$\Rightarrow \frac{AB}{BD} = \frac{AC}{CE}$$

$$\Rightarrow \frac{AB}{BD} = \frac{AC}{BD} \quad (\because BD = CE)$$

$$\Rightarrow AB = AC$$
अत: त्रिभुज ABC एक समद्विबाहु है।

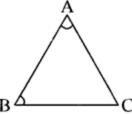

Ex 11.3

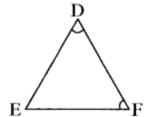

प्रश्न 1. दो त्रिभुज ABC और PQR में 28 और BF दोनों त्रिभुजों में से दो कोणों के नाम बताइए जो बराबर होना चाहिए, ताकि ये दोनों A समरूप हो सकें। अपने उत्तर के लिए कारण भी बताइए। **हल:** दिए गए दोनों त्रिभुजों ΔABC तथा ΔPQR में यह दिया गया है कि $\frac{AB}{PQ} = \frac{BC}{QR}$

$$\frac{AB}{PQ} = \frac{BC}{QR}$$

या

$$\frac{AB}{BC} = \frac{PQ}{QR}$$





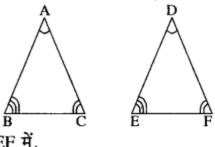
इन त्रिभुजों में यदि $\angle A = \angle P$ तथा $\angle C = \angle R$ हो तो $\angle B = \angle Q$ स्वतः ही हो जायेंगे तो दो त्रिभुज समान कोणिक हो जायेंगे तथा ये दोनों AABC व APOR समरूप हो जायेंगे।

प्रश्न 2. त्रिभुजों ABC एवं DEF में, $2A = \angle D$, $\angle B = \angle F$ हो तो क्या $\triangle ABC \sim \triangle DEF$ है? अपने उत्तर के लिए कारण दीजिए।

हल:

चित्र के अनुसार $\triangle ABC \sim \triangle DEF$ नहीं है क्योंकि दिए गए कोणों के क्रम में $\angle A = \angle D$ तो ठीक है लेकिन $\angle B \neq \angle F$ अतः दिए गए कोणों के क्रम के अनुसार $\triangle ABC \sim \triangle DFE$ होना चाहिए।

प्रश्न 3. यदि △ABC ~ △FDE हो तो क्या जा सकता है ? उत्तर को कारण सहित लिखिए।


हल: प्रश्न में दिया गया है कि \triangle ABC \sim \triangle FDE लेकिन इसके आधार पर $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ नहीं लिखा जा सकता है। दिए गए अनुसार वास्तव में शीर्षों के क्रम में यह अनुपात $\frac{AB}{FD} = \frac{BC}{DE} = \frac{CA}{EF}$ होना चाहिए।

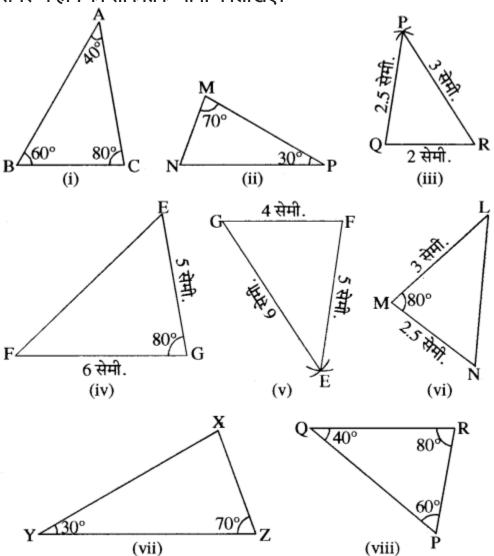
प्रश्न 4. यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाएँ और एक कोण के क्रमशः समानुपाती एवं बराबर हों, तो दोनों त्रिभुज समरूप होते हैं। क्या यह कथन सत्य है? कारण सहित उत्तरे लिखिए।

हल: प्रश्न में दिया गया कथन सत्य नहीं है क्योंकि दोनों त्रिभ्जों में दो भ्जाएँ और उनके अन्तर्गत बने कोण समान होने पर ही दोनों त्रिभुज समरूप होंगे।

प्रश्न 5. समानकोणिक त्रिभुजों से क्या तात्पर्य है? इनमें परस्पर क्या सम्बन्ध हो सकता है?

हल: यदि दो त्रिभुजों के संगत कोण बराबर हों तो वे दोनों त्रिभुज समानकोणिक त्रिभुज कहलाते हैं।

ΔABC व ΔDEF में,


$$\angle A = \angle D$$
, $\angle B = \angle E$

तथा

$$\angle C = \angle F$$

∴ ΔABC ~ ΔDEF

प्रश्न 6. निम्न दिए गए त्रिभुजों की आकृतियों में से समरूप त्रिभुज युग्मों का चयन कीजिए और उन्हें समरूप होने की सांकेतिक भाषा में लिखिए।

हल:

(a) दी गई आकृतियों में से समरूप त्रिभुज (i) व (viii) हैं तथा इन्हें सांकेतिक भाषा में ΔABC ~ ΔQPR लिखा जा सकता है क्योंकि यहाँ

$$\angle A = \angle Q = 40^{\circ}$$

 $\angle B = \angle P = 60^{\circ}$

$$\angle C = \angle R = 80^{\circ}$$

: ΔABC ~ ΔQPR

(b) दी गई आकृतियों में से समरूप त्रिभुज (ii) व (vii) हैं तथा इन्हें सांकेतिक भाषा में Δ MPN ~ Δ ZYX लिखा जा सकता है क्योंकि यहाँ

$$\angle M = \angle Z = 70^{\circ}$$

 $\angle P = \angle Y = 30^{\circ}$

 Δ MPN ~ Δ ZYX

(c) दी गई आकृतियों में से समरूप त्रिभुज (iii) व (v) हैं तथा इन्हें सांकेतिक भाषा में APQR ~ AEFG लिखा जा सकता है क्योंकि

$$\frac{PQ}{EF} = \frac{2.5}{5.0} = \frac{1}{2}, \frac{QR}{GF} = \frac{2}{4} = \frac{1}{2}$$

तथा

$$\frac{PR}{GE} = \frac{3}{6} = \frac{1}{2}$$

अत:

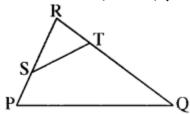
$$\frac{PQ}{EF} = \frac{QR}{GF} = \frac{PR}{GE}$$

∴ ΔPQR व ΔEFG समरूप हैं।

(d) दी गई आकृतियों में से समरूप त्रिभुज (iv) व (vi) हैं तथा इन्हें सांकेतिक भाषा में

लिखा जा सकता है। क्योंकि

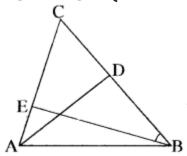
$$\angle E = \angle M = 80^{\circ}$$


$$\frac{ML}{EF} = \frac{3}{2} = \frac{1}{2}$$

$$\frac{MN}{EG} = \frac{2.5}{5} = \frac{1}{2}$$

$$\Rightarrow \frac{ML}{EF} = \frac{M!}{EC}$$

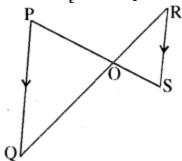
 Δ MLN ~ Δ EFG


प्रश्न 7. आकृति में △PRQ ~ △TRS हो तो बताइए इस समरूप त्रिभुज युग्म में कौन-कौनसे कोण परस्पर समान होने चाहिए?

हल: प्रश्न में दिए अनुसार ∆PQR ~ ∆TRS है। इन दोनों समरूप त्रिभुजों में ∠RPQ = ∠RTS तथा ∠RQP = ∠RST होने चाहिए।

∠R = ∠R	(उभयनिष्ठ कोण)
$\angle P = \angle T$	संगत कोण
∠Q = ∠S	संगत कोण

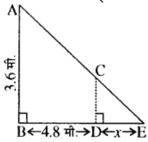
प्रश्न 8. आपको आकृति में स्थित उन दो त्रिभुजों का चयन करना है जो परस्पर समरूप हैं। यदि ∠CBE = ∠CAD है।



हल: प्रश्न में दी गई शर्त के अनुसार,

∴ ∠CBE = ∠CAD

ं वे ऐसे समरूप त्रिभुज ADC तथा त्रिभुज BEC होंगे अर्थात् ΔADC ~ ΔBEC.


प्रश्न 9. आकृति में PQ और RS समान्तर हैं, तो सिद्ध कीजिए △POQ ~ △SORI

(माध्य. शिक्षा बोर्ड, मॉडल पेपर, 2017-18)

प्रश्न 10. 90 सेमी. की लम्बाई वाली लड़की बल्ब लगे खम्भे के आधार से परे 1.2 मीटर/सेकण्ड की चाल से चल रही है। यदि बल्ब भूमि से 3.6 मीटर की ऊँचाई पर हो तो 4 सेकण्ड के बाद उस लड़की की छाया कितने मीटर होगी?

हल: माना AB एक बल्ब लगा खम्भा है। तथा एक लड़की है जो 1.2 मी./से. की चाल से चल रही है तथा 4 सेकण्ड के पश्चात् उसकी स्थिति CD पर है तथा DE उसकी छाया है।

माना

DE = x मीटर

BD = 1.2 मीटर x 4

4.8 मीटर

अब ∆ABE तथा ∆CDE में,

 $\angle B = \angle D = 90^{\circ}$

[क्योंकि खम्भा व लड़की दोनों जमीन पर ऊर्ध्वाधर हैं 1] ∠E = ∠E (उभयनिष्ठ कोण) इसलिये AA समरूपता से

 $\Delta ABE \sim \Delta CDE$

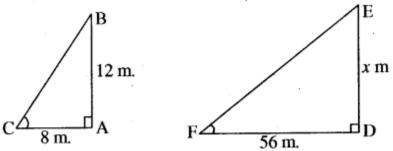
अतएव
$$\frac{BE}{DE} = \frac{AB}{CD}$$

$$\Rightarrow \frac{4.8+x}{x} = \frac{3.6}{0.9}$$

$$\begin{bmatrix} \because 90 \text{ kirl.} = \frac{90}{100} \text{ rllzx} \\ = 0.9 \text{ rllzx} \end{bmatrix}$$

$$\Rightarrow \frac{1.0 + x}{x} = \frac{4}{1}$$

$$\Rightarrow 4.8 + x = 4x$$


$$\Rightarrow 4x - x = 4.8$$

$$\therefore \qquad x = \frac{4.8}{3} = 1.6 \text{ flex}$$

.: 4 सेकण्ड के बाद लंडकी की छाया 1.6 मीटर होगी।

प्रश्न 11. 12 मीटर लम्बाई वाली ऊर्ध्वाधर स्तम्भ की भूमि पर छाया की लम्बाई 8 मीटर है, उसी समय एक मीनार की छाया की लम्बाई 56 मीटर हो तो मीनार की ऊँचाई ज्ञात कीजिए।

हल: पहले चित्रानुसार माना AB एक ऊर्ध्वाधर स्तम्भ है तथा AC उसकी परछाईं है। पुनः दूसरे चित्रानुसार DE एक मीनार है और DF उसकी परछाईं है।

प्रश्नानुसार AB = 12 m., AC = 8 m तथा DF = 40 m माना DE = x m., अब \triangle ABC और \triangle DEF में

 $\angle A = \angle D = 90^{\circ}$ तथा $\angle C = \angle F$ (उन्नयन कोण सूर्य का)

अतः समरूपता की 🗚 कसौटी से

$$\Rightarrow \frac{AB}{DE} = \frac{AC}{DF}$$

$$\Rightarrow \frac{12}{x} = \frac{8}{56} \Rightarrow x = \frac{12 \times 56}{8}$$

$$\therefore x = 84 \text{ m}$$

अतः मीनार की ऊँचाई 84 m है।

प्रश्न 12. किसी △ABC के शीर्ष A से उसकी सम्मुख भुजा BD पर लम्ब डालने पर AD² = BD × DC प्राप्त होता है, तो सिद्ध कीजिए ABC एक समकोण त्रिभुज है।

हल: त्रिभुज BDA तथा AADC में

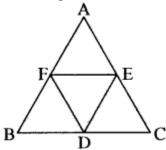
$$\frac{DB}{DA} = \frac{DA}{DC}$$
⇒ $AD^2 = BD \times DC$ (दिया है)
तथा $\angle BDA = \angle ADC$
(प्रत्येक कोण समकोण)
अत: समरूपता की SAS कसौटी से
$$\Delta BDA \sim \Delta ADC$$
⇒ $\angle ABD = \angle CAD$ और $\angle BAD = \angle ACD$
⇒ $\angle ABD + \angle ACD = \angle CAD + \angle BAD$
⇒ $\angle B + \angle C = \angle A$
⇒ $\angle A + \angle B + \angle C = 2 \angle A$ (दोनों पक्षों में $\angle A$ जोड़ने पर)

 \Rightarrow 2 \angle A = 180°

 $\Rightarrow \angle A = 90^{\circ}$

⇒ ∆ABC एक समकोण त्रिभुज है। (इतिसिद्धम्)

प्रश्न 13. सिद्ध कीजिए किसी त्रिभुज की तीनों भुजाओं के मध्य बिन्दुओं को क्रमशः मिलाने पर बनने वाले चारों त्रिभुज अपने मूल त्रिभुज के समरूप होते ।


हल: दिया है-

एक △ABC है जिसकी भुजाओं BC, CA और AB के मध्य बिन्दु क्रमशः D, E और F हैं। DE, EF और FD को मिलाने पर हमें निम्न चार त्रिभुज प्राप्त होते हैं|

 Δ AFE, Δ FED, Δ EDC तथा Δ DEF

उपपत्ति-

हम जानते हैं कि किसी त्रिभुज की। दो भुजाओं के मध्य बिन्दुओं को मिलाने वाली रेखा तीसरी भुजा के समान्तर तथा उसकी आधी होती है। स्पष्ट है कि AABC में E और F क्रमशः भुजाओं। AC और AB के मध्य-बिन्दु हैं।

∴ FE || BC

 \Rightarrow ∠AFE =∠B (संगत कोण)

अतः ∆AFE और ∆ABC में

∠AFE = ∠B

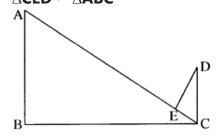
तथा∠A =∠A

∴ △AFE ~ △ABC (समरूपता की AA कसौटी से)

इसी प्रकार चूँिक DE || AB और DF || CA है। अतः Δ EDC $\sim \Delta$ ABC और Δ FBD $\sim \Delta$ ABC होगा। अब हमें यह सिद्ध करना है कि Δ DEF भी Δ ABC के समरूप होगा। चूँिक E और F क्रमशः भुजाओं AC और AB के मध्य बिन्द हैं।

$$\therefore$$
 FE = $\frac{1}{2}$ BC

इसी प्रकार DE = $\frac{1}{2}$ AB तथा DF = $\frac{1}{2}$ AC

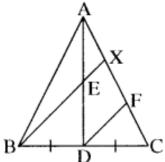

ੁੱਖਰ: $\frac{DE}{AB} = \frac{DF}{AC} = \frac{EF}{BC} = \frac{1}{2}$

⇒ ∆DEF और ∆ABC की भुजाएँ समानुपाती हैं।

⇒ ΔDEF ~ ΔABC

अतः ΔAFE, ΔFBD, ΔEDC और ΔDEF प्रत्येक ΔABC के समरूप है। (इतिसिद्धम्)

प्रश्न 14. आकृति दर्शाए अनुसार यदि AB \perp BC, DC \perp BC और DE \perp AC हो तो सिद्ध कीजिए \triangle CED \sim \triangle ABC



हल: दिया है AB ⊥ BC DC ⊥ BC एवं DE \perp AC सिद्ध करना है- $\Delta CED \sim \Delta ABC$. उपपत्ति-∆ABC में $\angle BAC + \angle BCA = 90^{\circ} \dots (1)$ $\angle BCA + \angle ECD = 90^{\circ} \dots (2) (DC \perp BC)$ समीकरण (1) व (2) से, ∠BAC = ∠ECD(3) ∆CED व ∆ABC में ∠CED = ∠ABC (प्रत्येक 90°) $\angle ECD = \angle BAC$ (समीकरण 3 से) :: ΔCED ~ ΔABC (कोण-कोण सर्वांगसमता से)

प्रश्न 15. \triangle ABC की भुजा BC के मध्य बिन्दु D है। यदि AD का समद्विभाजन करती हुई एक रेखा B से इस प्रकार खींची जाए कि वह भुजा AD को E पर काटते हुए AC को X पर काटे तो सिद्ध कीजिए $\frac{EX}{BE} = \frac{1}{2}$ है।

हल: दिया है-

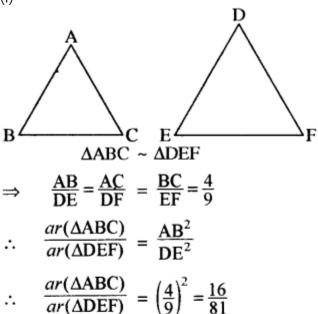
बिन्दु D, BC का मध्य बिन्दु है तथा E, AD का मध्य बिन्दु है।


```
सिद्ध करना है-
\frac{EX}{BE} = \frac{1}{3}
रचना-
बिन्दु D से, DF || BX.
उपपत्ति-
ΔAEX एवं ΔADF में,
∠EAX = ∠DAF (उभयनिष्ठ)
\angle AXE = \angle AFD (सम्पूरक कोण)
                      \Delta AEX \sim \Delta ADF (कोण-कोण सर्वांगसमता)
٠.
                         \frac{EX}{DF} = \frac{AE}{AD}
                         \frac{EX}{DF} = \frac{AE}{2AE} \Rightarrow 2EX = DF ....(1)
                       ΔCDF ~ ΔCBX (कोण-कोण सर्वांगसमता)
इसी प्रकार,
                         \frac{CD}{CB} = \frac{DF}{BX}
                           \frac{1}{2} = \frac{DF}{BE + EX}
                   BE + EX = 2DF
                  BE + EX = 2 (2 EX) [समीकरण (1) से]
                   BE + EX = 4EX
                          BE = 3EX
                                                                 इतिसिद्धम्
٠.
```

Ex 11.4

प्रश्न 1. निम्न के उत्तर सत्य एवं असत्य में देना है। अपने उत्तर का कारण भी लिखिए (यदि सम्भव हो)

- (i) दो समरूप त्रिभुजों की संगत भुजाओं को अनुपात 4 : 9 है तो इन त्रिभुजों के क्षेत्रफलों का अनुपात 4 : 9 है।
- (ii) दो त्रिभजों क्रमशः ABC व DEF में यदि


ΔABC के क्षेत्रफल = ΔDEF के क्षेत्रफल

 $rac{AB^2}{DE^2} = rac{9}{4}$ है तो $\Delta ABC = ADEF$ होगा।

- (iii) दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी भुजाओं के वर्गों के समानुपाती होता है।
- (iv) ΔABC एवं ΔΑΧΥ समरूप हों और उनके क्षेत्रफलों का मान समान हो तो XY एवं BC सम्पाती भुजाएँ हो सकती हैं।

हल:

(i)

दिया गया कथन असत्य है। उत्तर

(ii)
$$\frac{\Delta ABC$$
 का क्षेत्रफल $=\frac{(AB)^2}{(DE)^2}=\frac{9}{4}$

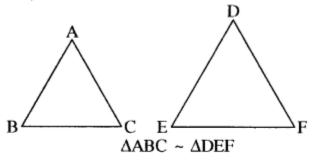
$$\therefore \frac{AB}{DE} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$

संगत भुजाओं का अनुपात 3 : 2 है जबिक सर्वांगसमता के लिये यह अनुपात 1: 1 होता है। अतः कथन असत्य है।

(iii) यह दिया गया कथन भी असत्य है क्योंकि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात संगत भुजाओं के वर्गों के समानुपाती नहीं अपितु बराबर होता है।

(iv) ΔABC ~ ΔAXY समरूप है।

$$\frac{\Delta ABC \text{ का क्षेत्रफल}}{\Delta AXY \text{ का क्षेत्रफल}} = \frac{(AB)^2}{(AX)^2} = \frac{(BC)^2}{(XY)^2} = \frac{(AC)^2}{(AY)^2}$$


$$\Rightarrow \frac{1}{1} = \frac{(AB)^2}{(AX)^2} = \frac{(BC)^2}{(XY)^2} = \frac{(AC)^2}{(AY)^2}$$

$$\Rightarrow \frac{(AB)^2}{(AX)^2} = \frac{1}{1} \text{ या } \frac{AB}{AX} = \frac{1}{1}$$

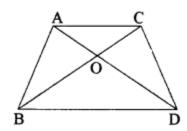
इसी प्रकार BC = XY और AC = AY अतः कथन सत्य है।

प्रश्न 2. यदि ΔABC ~ ΔDEF और इनके क्षेत्रफल क्रमशः 64 वर्ग सेमी. और 121 वर्ग सेमी. हैं यदि EF = 15.4 सेमी. हो तो BC ज्ञात कीजिए।

हल: ∆ABC ~ ∆DEE, ∆ABC का क्षेत्रफल = 64 cm और ADEF का क्षेत्रफल = 121 cm² और EF = 15.4 cm² है।

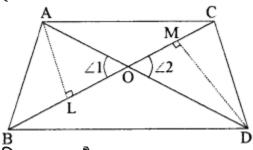
$$\therefore \frac{ar \left(\Delta ABC\right)}{ar \left(\Delta DEF\right)} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$$

[: हम जानते हैं कि यदि दो त्रिभुज समरूप हों तो उनके क्षेत्रफलों का अनुपात संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।]


या,
$$\frac{64}{121} = \frac{BC^2}{EF^2}$$
या,
$$\left(\frac{8}{11}\right)^2 = \left(\frac{BC}{15.4}\right)^2$$
या,
$$\frac{8}{11} = \frac{BC}{15.4}$$
∴
$$BC = \frac{8 \times 15.4}{11}$$

$$BC = 8 \times 1.4$$

$$BC = 11.2 \text{ cm.}$$


प्रश्न 3. एक ही आधार BC पर दो त्रिभुज ABC एवं DBC बने हैं। यदि AD व BC परस्पर O पर प्रतिच्छेद करें तो सिद्ध कीजिए

$$\frac{\Delta ABC}{\Delta DBC}$$
 का क्षेत्रफल = $\frac{AO}{DO}$

हल: दिया है-

ΔΑΒC और ΔDBC एक ही आधार BC पर स्थित बने हुए दो त्रिभुज हैं। AD, BC को 0 पर प्रतिच्छेद करता है।

सिद्ध करना है- $\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}$

$$\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}$$

रचना-

AL ⊥ BC, DM ⊥ BC खींचिए।

उपपत्ति-

٠.

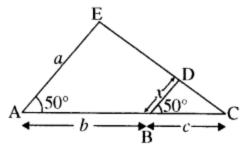
ΔALO और ΔDMO में,

$$\angle 1 = \angle 2$$
 (शीर्षाभिमुख कोण)
 $\angle L = \angle M$ (प्रत्येक 90°)
 $\Delta ALO \sim \Delta DMO [AA समरूपता कसौटी]$

$$\therefore \frac{AJ_{-}}{DM} = \frac{AO}{DO} \qquad \dots (i)$$

[• यदि दो त्रिभुज सपरूप हों, तो संगत भुजाएँ समानुपाती होती हैं।]

$$\frac{\Delta ABC \text{ का क्षेत्रफल}}{\Delta DBC \text{ का क्षेत्रफल}} = \frac{ar \left(\Delta ABC\right)}{ar \left(\Delta DBC\right)} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times BC \times DM}$$


$$\frac{ar \left(\Delta ABC\right)}{ar \left(\Delta DBC\right)} = \frac{AL}{DM}$$

$$\frac{ar \left(\Delta ABC\right)}{ar \left(\Delta DBC\right)} = \frac{AO}{DO} \quad \left[\because \frac{AL}{DM} = \frac{AO}{DO}\right]$$
(इतिसिद्धम्)

प्रश्न 4. निम्न प्रश्नों के हल ज्ञात कीजिए

(i) ΔABC में DE || BC एवं AD: DB = 2: 3 हो तो ΔADE एवं ΔABC के क्षेत्रफलों के अनुपात ज्ञात कीजिए। (ii) रेखाखण्ड AB के बिन्दु A व B पर PB और QA लम्ब है। यदि P व Q, AB के दोनों ओर स्थित हों और P a Q को मिलाने पर वह AB को O पर प्रतिच्छेद करे तथा PO= 5 सेमी., QO = 7 सेमी., ΔPOB का क्षेत्रफल 150 सेमी. हो तो AQOA का क्षेत्रफल ज्ञात कीजिए।

(iii) आकृति में x का मान a, b एवं c के पदों में ज्ञात कीजिए।

हल:

BC || DE तथा

$$\frac{AD}{DB} = \frac{2}{3} \ (दिया \ \rat{e})$$

ΔABC व ΔDEA में

$$\angle B = \angle D$$

A-A समरूपता कसौटी से

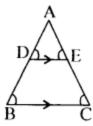
$$\Delta ADE \sim \Delta ABC$$

$$\frac{AD}{DB} = \frac{2}{3}$$
 दिया है

$$\therefore \qquad \frac{DB}{AD} = \frac{3}{2}$$

दोनों ओर 1 जोड़ने पर

$$\frac{\mathbf{DB}}{\mathbf{AD}} + 1 = \frac{3}{2} + 1$$


$$\Rightarrow \frac{DB + AD}{AD} = \frac{3+2}{2}$$

$$\Rightarrow \frac{AB}{AD} = \frac{5}{2}$$

इसलिये

$$\frac{ar(\Delta \text{ ADE})}{ar(\Delta \text{ ABC})} = \left(\frac{\text{AD}}{\text{AB}}\right)^2$$

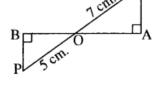
[त्रिभुज समरूप हो तो उन त्रिभुजों का क्षेत्रफल उनकी भुजाओं के वर्गों के अनुपात के बराबर होता है ।]

....(1)

$$\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \left(\frac{2}{5}\right)^2 = \frac{4}{25}$$

 \therefore $ar(\Delta ADE) : ar(\Delta ABC)$

= 4 : 25 उत्तर


(ii) ΔQAO और ΔPBO में

$$\angle$$
QAO = \angle PBO = 90°

अत: समरूपता की कसौटी से

$$\Rightarrow \frac{ar(\Delta \text{QAO})}{ar(\Delta \text{PBO})} = \frac{\text{QO}^2}{\text{PO}^2}$$

$$\Rightarrow \frac{ar(\Delta QAO)}{150} = \frac{7^2}{5^2}$$

$$\Rightarrow$$
 $ar(\Delta QAO) = \frac{150 \times 49}{25} = 294$ वर्ग सेमी. उत्तर

(iii) ΔCBD व ΔCAE में

$$\angle CBD = \angle CAE = 50^{\circ}$$
 (दिया है)
 $\angle C = \angle C$ (उभयनिष्ठ कोण)

अत: समरूपता की AA कसौटी से

$$\Rightarrow \frac{CB}{CA} = \frac{BD}{AE}$$

(समरूप त्रिभुजों की संगत भुजाएँ समानुपाती होती हैं।)

$$\Rightarrow \frac{c}{b+c} = \frac{x}{a}$$

⇒
$$x = \frac{ac}{b+c}$$
 उत्तर

प्रश्न 5. \triangle ABC में ∠B = 90° हो एवं BD कर्ण AC पर लम्बे हो तो सिद्ध कीजिए △ADB \sim △BDC

हल: दिया है-

एक समकोण त्रिभुज ABC है जिसमें ∠ABC = 90° है तथा BD। AC है।

सिद्ध करना है-

ΔADB ~ ΔBDC

उपपत्ति-

स्पष्ट है कि ∠ABD + ∠DBC = 90°

तथ ∠C + ∠DBC + ∠BDC = 180°
(त्रिभुज BCD में कोण योग गुणधर्म से)

⇒ ∠C + ∠DBC + 90° = 180°

⇒ ∠C + ∠DBC = 90°

परन्तु ∠ABD + ∠DBC = 90°

∴ ∠ABD + ∠DBC = 2C + ∠DBC

⇒ ∠DBC + 2C = ∠ABD + ∠DBC

⇒ ∠ABD = ∠C(i)

अतः △ADB और ABDC में।

∠ADB = ∠BDC = 90° (प्रत्येक कोण 90° के बराबर)

अतः समरूपता की कसौटी से

△ADB ~ △BDC (इतिसिद्धम्)

प्रश्न 6. सिद्ध कीजिए कि वर्ग की एक भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का आधा होता है।

हल: दिया है-

एक वर्ग ΔBCD है जिसकी भुजा BC पर समबाहु त्रिभुज BCE तथा विकर्ण AC पर समबाहु त्रिभुज ACF बनाया गया है।

सिद्ध करना है-

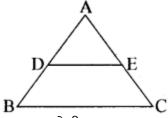
$$ar(\Delta BC\mathbf{E}) = \frac{1}{2}ar(\Delta ACF)$$

उपपत्ति-

चूँकि ΔBCE और ΔACF दोनों ही समबाहु त्रिभुज हैं।

ं ΔBCE ~ ΔACF [: दोनों त्रिभुजों का प्रत्येक कोण 60° है अतः दोनों त्रिभुज समानकोणीय हैं।]

ा.
$$\Delta BCE \approx \Delta ACF$$
 [: प्रांगा प्रमुखा क्या प्रस्कित क्या कि है कि वर्ग ABCD में $AC = \sqrt{2}$ BC $\Delta AC = \sqrt{$


$$\Rightarrow ar(\Delta BCE) = \frac{1}{2}ar(\Delta ACF)$$

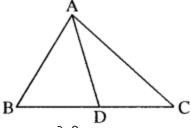
(इतिसिद्धम्)

Additional Questions

विविध प्रश्नमाला 11

प्रश्न 1. आकृति में DE || BC हो, AD = 4 सेमी., DB = 6 सेमी. एवं AE = 5 सेमी. हो, तो EC का मान होगा

(क) 6.5 सेमी.


(ख) 7.0 सेमी.

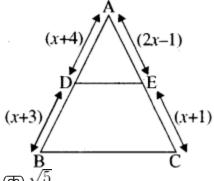
(ग) 7.5 सेमी.

(घ) 8.0 सेमी

उत्तर: (ग) 7.5 सेमी.

प्रश्न 2. आकृति में AD, कोण A का समद्विभाजक, AB = 6 सेमी., BD = 8 सेमी., DC = 6 सेमी. हो, तो AC का मान होगा

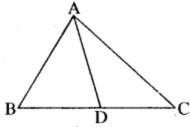
(क) 4.0 सेमी.


(ख) 4.5 सेमी.

(ग) 5 सेमी.

(घ) 5.5 सेमी.

उत्तर: (ख) 4.5 सेमी.


प्रश्न 3. आकृति में, यदि DE || BC हो, तो x को मान होगा

- (क) $\sqrt{5}$
- (ख) $\sqrt{6}$
- $(1)\sqrt{3}$
- (ঘ) √7

उत्तर: (घ) √7

प्रश्न 4. आकृति में, यदि AB = 3.4 सेमी., BD = 4 सेमी., BC = 10 सेमी. हो, तो AC का मान होगा

- (क) 5.1 सेमी.
- (ग) 6 सेमी.
- (ख) 3.4 सेमी.
- (घ) 5.3 सेमी.

उत्तर: (क) 5.1 सेमी.

प्रश्न 5. दो समरूप त्रिभुजों के क्षेत्रफल क्रमशः 25 सेमी. एवं 36 सेमी. हैं, यदि छोटे त्रिभुज की माध्यिका 10 सेमी. हो तो बड़े त्रिभुज की संगत माध्यिका होगी

- (क) 12 सेमी.
- (ख) 15 सेमी.
- (ग) 10 सेमी.
- (घ) 18 सेमी.

उत्तर: (क) 12 सेमी.

प्रश्न 6. एक समलम्ब चतुर्भुज ABCD में AB || CD है एवं इसके विकर्ण O बिन्दु पर मिलते हैं। यदि AB = 6 सेमी. एवं DC = 3 सेमी. हो, तो ΔΑΟΒ के क्षेत्रफल एवं ACOD के क्षेत्रफल का अनुपाते होगा

- (ক) 4:1
- (ख) 1:2
- (ग) 2:1
- (ঘ) 1:4

उत्तर: (क) 4:1

प्रश्न 7. यदि △ABC एवं △DEF में ∠A = 50°, ∠B = 70°, ∠C = 60°, ∠D = 60°, ∠E = 70° एवं ∠F = 50° हो तो निम्नलिखित में सही है

- (Φ) $\Delta ABC \sim \Delta DEF$
- (평) $\triangle ABC \sim \triangle EDF$
- (\P) $\triangle ABC \sim \triangle DFE$.
- (되) $\triangle ABC \sim \triangle FED$

उत्तर: (घ) AABC ~ AFED

प्रश्न 8. यदि ΔABC ~ ΔDEF हो एवं AB = 10 सेमी., DE = 8 सेमी. हो, तो ΔABC का क्षेत्रफल ΔDEF का क्षेत्रफल होगा

(ক) 25:16

(ख) 16:25

(ग) 4:5

(ঘ) 5:4

उत्तर: (क) 25 : 16

प्रश्न 9. △ABC की भुजाओं AB एवं AC पर बिन्दु D और E इस प्रकार हैं कि DE || BC है एवं AD = 8 सेमी., AB = 12 सेमी. तथा AE = 12 सेमी. हो, तो CE का माप होगा

- (क) 6 सेमी.
- (ख) 18 सेमी.
- (ग) 9 सेमी.
- (घ) 15 सेमी.

उत्तर: (क) 6 सेमी.

प्रश्न 10. एक 12 सेमी. लम्बी ऊर्ध्वाधर छड़ की जमीन पर छाया की लम्बाई 8 सेमी. लम्बी है। यदि इसी समय एक मीनार की छाया की लम्बाई 40 मीटर हो, तो मीनार की ऊँचाई होगी

- (क) 60 मीटर
- (ख) 60 सेमी.
- (ग) 40 सेमी.
- (घ) 80 सेमी.

उत्तर: (क) 60 मीटर

प्रश्न 11. $\triangle ABC$ में यदि D, BC पर कोई बिन्दु इस प्रकार है कि $\frac{AB}{AC} = \frac{BD}{DC}$ हो, एवं $\angle B = 70^\circ$, $\angle C = 50^\circ$ हो, तो $\angle BAD$ ज्ञात कीजिए।

हल: दिया है-

 \triangle ABC जिसमें D. BC पर बिन्दु इस प्रकार है कि $\frac{AB}{AC} = \frac{BD}{DC}$ तथा $\angle B = 70^{\circ}$ व 20 = 50°

ज्ञात करना है— $\angle BAD$ उपपत्ति—यहाँ $\frac{AB}{AC} = \frac{BD}{CD}$ (दिया है)

अत: $\frac{AB}{BD} = \frac{AC}{CD}$ (लिख सकते हैं) $\triangle ABD \sim \triangle ADC$ $\triangle ABD \sim (70 + 50) = 60^{\circ}$

अत: $\angle BAD = \frac{1}{2}, \angle A = \frac{60}{2} = 30^{\circ}$

प्रश्न 12. यदि △ABC में DE || BC हो, एवं AD = 6 सेमी., DB = 9 सेमी. और AE = 8 सेमी. हो, तो AC को ज्ञात कीजिए।

हल: △ABC में दिया है कि DE || BC

∴
$$\frac{AD}{DB} = \frac{AE}{EC}$$

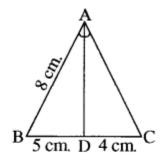
⇒ $\frac{6}{9} = \frac{8}{EC}$

⇒ $EC = \frac{9 \times 8}{6} = 12$ सेमी.

प्रश्न 13. यदि △ABC में 2A का समद्विभाजक AD हो एवं AB = 8 सेमी., BD = 5 सेमी. एवं DC = 4 सेमी. हो, तो AC को ज्ञात कीजिए।

हल: ∆ABC में

AD, शीर्ष कोण A का समद्विभाजक है।

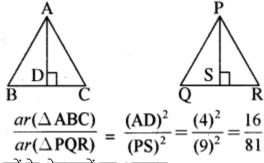

इसलिए आधारभूत अनुपातिकता प्रमेय से

$$\frac{BD}{DC} = \frac{AB}{AC}$$

 $\frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{AB}}{\mathrm{AC}}$ यहाँ $\mathrm{AB} = 8$ सेमी., $\mathrm{BD} = 5$ सेमी.

तथा DC = 4 सेमी.

मान रखने पर


$$\frac{5}{4} = \frac{8}{AC}$$

$$\Rightarrow AC = \frac{8 \times 4}{5} = \frac{32}{5} = 6.4 \text{ सेमी}.$$

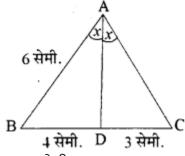
प्रश्न 14. यदि दो समरूप त्रिभुजों की ऊँचाइयों का अनुपात 4:9 हो, तो दोनों त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिए।

हल: हम जानते हैं कि दो समरूप त्रिभुजों के क्षेत्रफलों के बीच अनुपात उनकी संगत ऊँचाइयों के वर्गों के अनुपात के बराबर होता है।

माना ΔABC और ΔPQR समरूप हैं और AD और PS इनकी संगत ऊँचाई है।

इसलिये त्रिभुजों के क्षेत्रफलों का अनुपात = 16:81

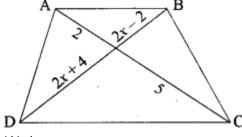
अन्य महत्त्वपूर्ण प्रश्न


वस्तुनिष्ठ प्रश्न

प्रश्न 1. दो सरल रेखाएँ जो एक ही रेखा के लम्बवत् हों, परस्पर कहलाती हैं

- (A) लम्ब रेखाएँ।
- (B) समान्तर रेखाएँ
- (C) समद्विभाजित रेखाएँ
- (D) समान रेखाएँ

उत्तर: (B) समान्तर रेखाएँ


प्रश्न 2. दी गई आकृति में AD, ∠A का अन्तः समद्विभाजक है। यदि AB = 6 सेमी., BD = 4 सेमी. और DC = 3 सेमी. हो तो AC का मान है

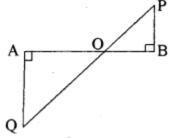
- (A) 3 सेमी.
- (B) 4 सेमी.
- (C) 4.5 सेमी.
- (D) 5 सेमी.

उत्तर: (C) 4.5 सेमी.

प्रश्न 3. संलग्न आकृति में यदि AB || CD हो तो × का मान है

- (A) 1
- (B) 2

- (C) 3
- (D) 4


उत्तर: (C) 3

प्रश्न 4. यदि दो समरूप त्रिभुजों की ऊँचाइयों का अनुपात 9 : 16 हो तो दोनों त्रिभुजों के क्षेत्रफलों का अनुपात होगा

- (A) 81:256
- (B) 81:156
- (C) 16:9
- (D) 3:4

उत्तर: (A) 81 : 256

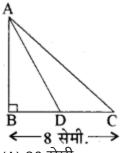
प्रश्न 5. दी गई आकृति में QA और PB, AB पर लम्बवत् हैं। यदि AO = 10 सेमी., BO = 6 सेमी. तथा PB = 9 सेमी. हो तो AQ की लम्बाई है

- (A) 12 सेमी.
- (B) 15 सेमी.
- (C) 18 सेमी.
- (D) 21 सेमी.

उत्तर: (B) 15 सेमी.

प्रश्न 6. △ABC ~ △DEF है, यदि ∠A = 40°, ∠E = 80° है तो ∠C का मान है

- (A) 70°
- (B) 60°
- (C) 50°
- (D) 40°


उत्तर: (B) 60°

प्रश्न 7. यदि AABC में D भुजा BC को मध्य बिन्दु हो और $AB^2 + AC^2 = x (BD^2 + AD^2)$ तो x का मान होगा

- (A) 1
- (B) 2
- (C) 4
- (D) शून्य

उत्तर: (B) 2

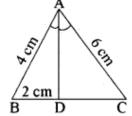
प्रश्न 8. चित्र में ABC एक समकोण समद्भिबाहु त्रिभुज है जहाँ ∠B = 90° है। यदि BC = 8 सेमी. है तो AD की लम्बाई क्या होगी? जहाँ D, BC का मध्य बिन्दु है

- (A) 20 सेमी.
- (B) $\sqrt{20}$ सेमी.
- (C) $2\sqrt{20}$ सेमी.
- (D) $4\sqrt{20}$ सेमी.

उत्तर: (C) $2\sqrt{20}$ सेमी.

अतिलघूत्तरात्मक प्रश्न

प्रश्न 1. △ABC में AD कोण BAC का समद्विभाजक है। यदि AB = 4 cm, AC = 6 cm, BD = 2 cm है तो BC का मान ज्ञात कीजिए।


हल: आधारभूत समानुपातिक प्रमेय से

$$\frac{BD}{DC} = \frac{AB}{AC}$$

$$DC = \frac{BD \times AC}{AB}$$

या

मान रखने पर

$$= \frac{6 \times 2}{4} = 3 \text{ cm}$$

$$BC = BD + DC$$

$$= 2 + 3 = 5 \text{ cm}$$

प्रश्न 2. किसी त्रिभुज की बराबर भुजाओं के सम्मुख कोण कैसे होते हैं?

उत्तर: बराबर भुजाओं के सम्मुख कोण समान होते हैं।

प्रश्न 3. दो समरूप त्रिभुजों की भुजाएँ 4 : 5 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिये।

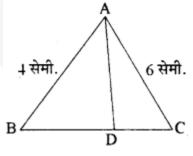
हल: : समरूप त्रिभुजों के क्षेत्रफलों का अनुपात भुजाओं के अनुपात के वर्ग के बराबर है, अतः त्रिभुजों के क्षेत्रफलों में अनुपात

 $= (4:5)^2$

= 16:25

प्रश्न 4. बौधायन प्रमेय का कथन लिखिए।

उत्तर: बौधायन प्रमेय-किसी आयत के विकर्ण से बने वर्ग का क्षेत्रफल इसकी दोनों आसन्न भुजाओं पर बने वर्गों के योग के बराबर होता है।


प्रश्न 5. दी गई आकृति में AD, ∠A का अन्त:समद्विभाजक है। यदि AB = 4 सेमी., AC = 6 सेमी. है तो BD: DC लिखिए।

हल:

$$\frac{AB}{AC} = \frac{BD}{DC}$$

अत:

$$\frac{4}{6} = \frac{BD}{DC}$$

प्रश्न 6. यदि ΔABC ~ ΔDEF, AB = 5 सेमी., DE = 3 सेमी. तथा AABC का क्षेत्रफल = 50 सेमी. है, तो ΔDEF का क्षेत्रफल लिखिए।

हल:

$$\frac{\Delta ABC \text{ का क्षेत्रफल}}{\Delta DEF \text{ का क्षेत्रफल}} = \frac{(AB)^2}{(DE)^2}$$

$$= \frac{50}{\Delta DEF \text{ का क्षेत्रफल}} = \frac{25}{9}$$

$$= \Delta DEF \text{ का क्षेत्रफल} = \frac{50 \times 9}{25} = 18 \text{ सेमी.}^2$$

प्रश्न 7. संलग्न आकृति में BC || PQ यदि AP = 4 सेमी., AQ= 5 सेमी. तथा QC = 2.5 सेमी. तो PB का मान ज्ञात कीजिए।

हल:
$$\frac{AQ}{QC} = \frac{AP}{PB}$$
5.0 सेमी.

A
4.0 सेमी.

 C
 $= \frac{5}{2.5} = \frac{4}{PB}$
3त: $PB = \frac{4}{2} = 2$ सेमी.

प्रश्न 8. उपर्युक्त प्रश्न के चित्र में यदि AB = 7 सेमी., AP = 5 सेमी. तथा AC = 10.5 सेमी. तो AQ का मान ज्ञात कीजिए।

हल:

अत:

$$\frac{AC}{AQ} = \frac{AB}{AP}$$

$$= \frac{10.5}{AQ} = \frac{7}{5}$$

$$AQ = \frac{10.5 \times 5}{7} = 7.5 \text{ सेमी}.$$

प्रश्न 9. दो समरूप त्रिभुज ABC तथा PQR के परिमाप क्रमशः 36 सेमी. तथा 24 सेमी. हैं। यदि PQ = 10 सेमी. हो तो AB ज्ञात कीजिए।

हल:

$$\frac{\Delta ABC}{\Delta PQR}$$
 का परिमाप
$$= \frac{AB}{PQ} = \frac{36}{24}$$

$$= \frac{AB}{10} = \frac{36}{24}$$

$$AB = 15 सेमी.$$

अत:

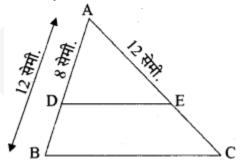
प्रश्न 10. यदि दो त्रिभुज ABC और XYZ में $\frac{AB}{XY} = \frac{BC}{YZ} = \frac{AC}{ZX}$ ता \triangle ABC के कोण A का मान त्रिभुज XYZ के किस कोण के बराबर होगा?

उत्तर: ∠X के समान।

प्रश्न 11. यदि $\triangle ABC$ एवं $\triangle DEF$ $\stackrel{AB}{DE} = \stackrel{BC}{EF} = \stackrel{AC}{DF}$ आपस में कैसे त्रिभुज होंगे?

उत्तर: समरूप त्रिभुज।

प्रश्न 12. दो त्रिभुजों के समरूप होने की दो दशाएँ बताइए।


उत्तर: दो त्रिभुज समरूप होते हैं यदि

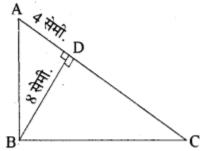
- उनके संगत कोण समान हों
- उनकी संगत भुजाएँ समानुपाती हों।

प्रश्न 13. SSS नियम लिखिए।

उत्तर: SSS नियम-यदि दो त्रिभुजों की संगत भुजाएँ समानुपाती हैं, तो वे दोनों समरूप होते हैं।

प्रश्न 14. △ABC की भुजाओं AB और AC पर बिन्दु D और E इस प्रकार हैं कि DE || BC यदि AD = 8 सेमी., AB = 12 सेमी. तथा AE = 12 सेमी. हो तो CE का माप लिखिए।

हल: आधारभूत आनुपातिक प्रमेय से


$$\frac{AD}{BD} = \frac{AE}{CE}$$

 $\frac{\text{AD}}{\text{BD}} = \frac{\text{AE}}{\text{CE}}$ यहाँ AD = 8 सेमी., BD = (12 – 8) = 4 सेमी. तथा AE = 12 सेमी. है। अतः मान रखने पर $\frac{8}{4} = \frac{12}{CE}$ $CE = \frac{12}{8} \times 4 = 6$ सेमी.

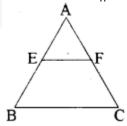
$$\frac{8}{4} = \frac{12}{CE}$$

$$CE = \frac{12}{8} \times 4 = 6$$
 सेमी

प्रश्न 15. दी गई आकृति में ∠ABC = 90° तथा BD 1 AC है। यदि BD = 8 सेमी. तथा AD = 4 सेमी. हो तो CD को माप लिखिए।

हल: AABD व ABDC में

$$\Delta ABD \sim \Delta BDC$$


$$\frac{AB}{BD} = \frac{BD}{CD}$$

$$\frac{4}{8} = \frac{8}{CD}$$
 या $4CD = 64$

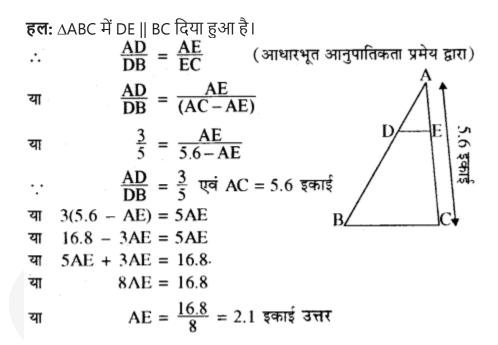
$$CD = \frac{64}{4} = 16$$
 सेमी. उत्तः

प्रश्न 16. चित्र में EF || BC, यदि AE: BE = 4:1 और CF = 1.5 सेमी. हो, तो AF की लम्बाई क्या होगी?

हल: चित्र में EF || BC

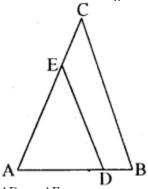
$$\therefore \frac{AE}{BE} = \frac{AF}{CF}$$

$$\Rightarrow \frac{4}{1} = \frac{AF}{1.5}$$


$$\Rightarrow AF = 4 \times 1.5$$
6.0 सेमी.

प्रश्न 17. दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात 16 : 81 है तो इनकी भुजाओं का अनुपात ज्ञात कीजिए।

हल: \cdot समरूप त्रिभुजों के क्षेत्रफलों का अनुपात भुजाओं के अनुपात के वर्ग के बराबर होता है। अतः इनकी भुजाओं का अनुपात $=\sqrt{\frac{16}{81}}=\frac{4}{9}$ अतः इनकी भुजाओं का अनुपात =4:9


लघूत्तरात्मक प्रश्न

प्रश्न 1. \triangle ABC में DE || BC है तथा $\frac{AD}{DB} = \frac{3}{5}$ है। यदि AC = 5.6 इकाई हो तो AE का मान ज्ञात कीजिए।

प्रश्न 2. दी गई आकृति में DE || BC है यदि AD = r, DB = r - 2, AE = r + 2 और EC = r-1 हो तो r का मान ज्ञात कीजिए।

हल: △ABC में DE || BC अतः

= AE (आधारभूत आनुपातिकता प्रमेय द्वारा)

या
$$\frac{x}{x-2} = \frac{x+2}{x-1}$$

या
$$x(x-1) = (x+2)(x-2)$$

या
$$x^2 - x = x^2 - 4$$

या
$$x = 4$$

प्रश्न 3. समलम्ब चतुर्भुज ABCD में AB || DC है। AD व BC पर क्रमशः E और F इस प्रकार स्थित हैं कि EF || AB है। सिद्ध कीजिए $\frac{AE}{ED} = \frac{BF}{FC}$

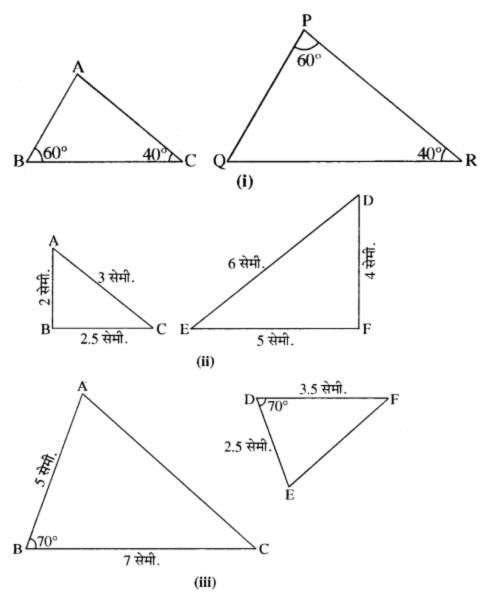
हल: A a C को मिलाइए। इस प्रकार AC, EI के बिन्दु G से गुजरता

∴ AB || DC और EF || AB (दिया हुआ है)

: EF || DC (एक ही रेखा के समान्तर खींची गई सभी रेखाएँ परस्पर समान्तर होती हैं ।)

△ADC में EG || DC (यहाँ EF || DNC और E(G, EF का ही भाग है।)

अत: $\frac{AE}{ED} = \frac{AG}{GC}$ (आधारभूत आनुपातिकता प्रमेय द्वारा)


या
$$\frac{AG}{CG} = \frac{AE}{ED}$$
(1)

इसी प्रकार ΔCAB में $\frac{CG}{AG} = \frac{CF}{BF}$

या
$$\frac{AG}{CG} = \frac{BF}{CF}$$
(2)

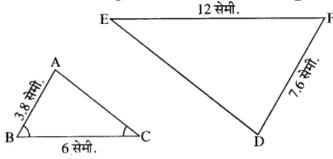
अत: (1) और (2) से $\frac{AE}{ED} = \frac{BF}{FC}$ इतिसिद्धम्

प्रश्न 4. आकृति में दर्शाए गए त्रिभुजों के युग्मों में कौन-कौनसे युग्म समरूप हैं? समरूपता के नियम लिखते हुए सांकेतिक रूप से लिखकर व्यक्त करें।

हल:

(i) Δ BCA $\sim \Delta$ PQR

चूंकि
$$\angle B = \angle P = 60^{\circ}$$
, $\angle C = \angle R = 40$


अतः AAA समरूपता प्रमेय द्वारा ABCA ~ APRQ होगा।

$$\frac{AB}{DF} = \frac{BC}{FE} = \frac{CA}{ED} = \frac{1}{2}$$

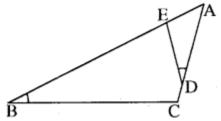
(ii) ΔABC व ADEF में $\frac{AB}{DF}=\frac{BC}{FE}=\frac{CA}{ED}=\frac{1}{2}$ अतः SSS समरूपता प्रमेय से $\Delta ABC\sim \Delta DEF$

(iii) ΔABC व ΔDEF में $\frac{AB}{DE} = \frac{BC}{DF} = 2$ एवं $\angle ABC = 70^\circ = \angle EDF$ अतः SAS समरूपता प्रमेय से $\Delta ABC \sim \Delta EDF$

प्रश्न 5. दी गई आकृति में AABC व ADEF की तुलना कर ∠D, ∠E एवं ∠F का मान ज्ञात कीजिए।

हल:

 Δ ABC एवं Δ DEF ਸੇਂ $\frac{AB}{DF}=\frac{BC}{FE}=\frac{CA}{ED}=\frac{1}{2}$


अत: SSS समरूपता प्रमेय से।

 $\triangle ABC \sim \triangle DEF$

$$\Rightarrow \angle A = \angle D, \angle B = \angle F C \angle C = \angle E$$

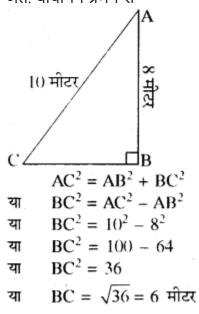
$$\Rightarrow \angle D = 180 - (60 + 40) = 80^{\circ}$$

प्रश्न 6. आकृति में ∠ADE =∠B और AD = 3.8 सेमी., AE = 3.6 सेमी., BE = 2.1 सेमी. और BC = 4.2 सेमी. तो DE का मान ज्ञात कीजिए।

हल: AADE एवं AABC में

∠ADE एवं = ∠B (दिया हुआ) ∠A = ∠A (उभयनिष्ट)

$$\Rightarrow \frac{AD}{AB} = \frac{DE}{BC}$$


या
$$\frac{AD}{AE + EB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{3.8}{3.6+2.1} = \frac{DE}{4.2}$$

या DE =
$$\frac{3.8 \times 4.2}{5.7} = \frac{15.96}{5.7}$$

प्रश्न 7. 10 मीटर लम्बी एक सीढ़ी को एक दीवार पर टिकाने से वह भूमिं से 8 मीटर ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढी के निचले सिरे की दूरी ज्ञात कीजिए।

हल: आकृति के अनुसार ∆ABC एक समकोण त्रिभुज है जिसका ∠B = 90° है। अत: बौधायन प्रमेय से

प्रश्न 8. एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 किमी./घण्टे की चाल से उड़ता है। उसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 किमी./घण्टे की चाल से उड़ता है। $1\frac{1}{2}$ घण्टे बाद दोनों हवाई जहाजों के मध्य की दूरी कितनी होगी?

हल: प्रथम हवाई जहाज की उत्तर दिशा में $1\frac{1}{2}$ घण्टे बाद हवाई अड्डे से दूरी = चाल × समय = 1000 × $\frac{3}{2}$ = 1500 किमी.

दूसरे हवाई जहाज की पश्चिम दिशा में $^{1\frac{1}{2}}$ घण्टे बाद हवाई अड्डे से दूरी

= चाल
$$\times$$
 समय = $1200 \times \frac{3}{2} = 1800$ किमी.
आकृतिनुसार $AB^2 = AC^2 + BC^2$ (बौधायन प्रमेय)
 $AB^2 = 1500^2 + 1800^2$
= $2250000 + 3240000$
= 5490000
 $AB = \sqrt{5490000}$
= $\sqrt{900 \times 61}$
= $30\sqrt{61}$ किमी. उत्तर

प्रश्न 9. यदि $\triangle ABC \sim \triangle DEF$ है जिनमें $\triangle ABC = 2.2$ सेमी. और $\triangle DE = 3.3$ सेमी. हो तो $\triangle ABC$ और $\triangle DEF$ के क्षेत्रफलों का अनुपात ज्ञात कीजिए।

हल: हम जानते हैं कि दो त्रिभुज समरूप हों तो उनकी संगत भुजाओं के वर्गों का अनुपात उनके क्षेत्रफलों के बराबर होता है।

अत:
$$\frac{\Delta ABC}{\Delta DEF}$$
 का क्षेत्रफल $=\frac{(2.2)^2}{3.3^2} = \left(\frac{22}{33}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$

प्रश्न 10. दो समरूप त्रिभुज ABC और PQR की संगत भुजाओं का अनुपात ज्ञात कीजिए जबकि दोनों त्रिभुजों का क्षेत्रफल क्रमशः 36 वर्ग सेमी. एवं 49 वर्ग सेमी. है।

हल: हम जानते हैं कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के अनुपातों के बराबर होता है।

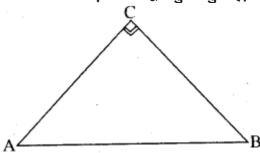
अत:
$$\frac{\Delta ABC}{\Delta PQR}$$
 का क्षेत्रफल $=\frac{(AB)^2}{(PQ)^2} = \frac{36}{49}$

या
$$\frac{AB}{DE} = \sqrt{\frac{36}{49}} = \frac{6}{7}$$

प्रश्न 11. यदि $\triangle ABC \sim \triangle PQR$ हो, AABC का क्षेत्रफल = 16 सेमी. एवं $\triangle PQR$ का क्षेत्रफल 9 सेमी. तथा AB = 2.1 सेमी. हो तो PQ की लम्बाई ज्ञात कीजिए।

हल:

$$\therefore \frac{\Delta ABC \text{ का क्षेत्रफल}}{\Delta PQR \text{ का क्षेत्रफल}} = \frac{(AB)^2}{(PQ)^2}$$

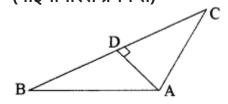

$$\Rightarrow \frac{16}{9} = \frac{(2.1)^2}{PO^2}$$

दोनों ओर वर्गमूल लेने पर

$$\Rightarrow \frac{4}{3} = \frac{2.1}{PQ}$$

⇒
$$PQ = \frac{2.1 \times 3}{4} = \frac{6.3}{4} = 1.575 \text{ सेमी}.$$

प्रश्न 12. ABC एक समद्विबाहु त्रिभुज है, जिसका कोण C समकोण है। सिद्ध कीजिए AB = 2AC है।


हल:

या

ABC एक समकोण त्रिभुज है, जिसमें ∠C = 90°, AC.= BC (दिया हुआ)(1) समकोण त्रिभुज में बौधायन प्रमेय से $AB^2 = AC^2 + BC^2$ $AB^2 = AC^2 + AC^2$ [समी. 1 सो] $AB^2 = 2AC^2$

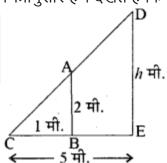
प्रश्न 13. दी गयी आकृति में, AD \perp BC है। सिद्ध कीजिये कि AB² + CD² = BD² + AC² है। (पाइथागोरस प्रमेय से)

इतिसिद्धम्

हल:

ΔADC से

$$AC^2 = AD^2 + CD^2$$
(1) (पाइथागोरस प्रमेय से)


∆ADB से

$$AB^2 = AD^2 + BD^2$$
(2)
(पाइथागोरस प्रमेय से)

समीकरण (2) में से समीकरण (1) को घटाने पर $AB^2 - AC^2 = BD^2 - CD^2$ $AB^2 + CD^2 = BD^2 + AC^2$ (इतिसिद्धम्) या

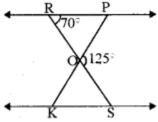
प्रश्न 14. एक समतल जमीन पर 2 मी. लम्बे छात्र की छाया की लम्बाई 1 मी. है। उसी समय एक मीनार की छाया की लम्बाई 5 मी. हो, तो मीनार की ऊँचाई ज्ञात कीजिए।

हल: माना कि मीनार की ऊँचाई h मी. है। चित्रानुसार हम देखते हैं कि ΔABC तथा ΔDEC समरूप हैं अर्थात्।

अत:

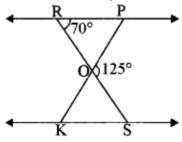
$$\frac{AB}{DE} = \frac{CB}{CE}$$

 \Rightarrow


$$\frac{2}{h} = \frac{1}{5}$$

या

$$h = 5 \times 2 = 10$$
 मी.


अतः मीनार की ऊँचाई = 10 मी.

प्रश्न 15. आकृति में ∠OKS व ∠ROP का मान ज्ञात कीजिए, यदि ∆OPR ~ ∆OSK तथा ∠POS = 125° और ∠PRO = 70° है।

हल: प्रश्नानुसार ∠POS = 125° तथा ∠PRO = 70°

चित्रानसार ROS एक सरल रेखा है।

 $\therefore \angle ROP + \angle POS = 180^{\circ}$

या ∠ROP + 125° = 180°

या ∠ROP = 180° - 125°

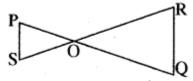
=55°

जब ∠ROP = 55° तो ∠KOS भी 55° का होगा क्योंकि ये शीर्षाभिमुख कोण या सम्मुख कोण हैं।

 $\triangle OPR \sim \triangle OSK :: \angle R = \angle S = 70^{\circ}$

अतः ∆ROP में ∠R +20+ ∠P = 180°

 $70^{\circ} + 55^{\circ} + \angle P = 180^{\circ}$

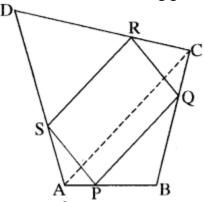

 $\angle P = 180^{\circ} - 70^{\circ} - 55^{\circ} 4$

∠ P = 55°

 $\angle P = \angle K = 55^{\circ}$

अतः ∠OKS = 55° तथा ∠ROP = 55°

प्रश्न 16. दी गई आकृति में यदि OP. OQ = OR . OS तो दर्शाइए ∠OPS = ∠ORQ a ∠OQR = ∠OSP. (माध्य. शिक्षा बोर्ड, 2018)



हल: $\triangle POS$ व $\triangle QOR$ में $\triangle OP$. $\triangle OQ = OR$. $\triangle OS$ दिया हुआ है। $\frac{OP}{OS} = \frac{OR}{OQ}$(1) तथा $\triangle POS = \triangle ROQ$ (शीर्षाभिमुख कोण)(2) समीकरण (1) व (2) से $\triangle POS \sim \triangle ROQ$ इसलिये $P = \triangle R$ एवं $\triangle S = \triangle Q$ (समरूप त्रिभुजों के संगत कोण) अतः $\triangle OPS = \triangle ORQ$ वे $\triangle OOR = \triangle OSP$ इतिसिद्धम्

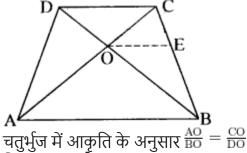
निबन्धात्मक प्रश्न

प्रश्न 1. ABCD एक चतुर्भुज है जिसकी भुजाएँ AB, BC, CD और DA पर क्रमशः P, Q, R एवं s बिन्दु इस प्रकार स्थित हैं कि ये चतुर्भुज के शीर्ष A व C के सापेक्ष इन्हें समत्रिभाजित करते हैं, तो सिद्ध कीजिए कि PQRS एक समान्तर चतुर्भुज है।

हल: PQRS के समान्तर चतुर्भुज सिद्ध करने के लिए हमें PQ || SR एवं QR || PS सिद्ध करना होगा।

दिया हुआ है-

P, Q, R और S बिन्दु क्रमश: AB, BC, CD और DA पर इस प्रकार स्थित हैं कि BP = 2PA, BQ = 2QC, DR = 2RC और DS = 2SA


रचना-

A को C से मिलाया

(आधारभूत आनुपातिकता प्रमेय की विलोम प्रमेय द्वारा) (1) व (2) से SR || AC तथा PQ || AC ⇒ SR || PQ इसी प्रकार BD को मिलाकर हम उपर्युक्तानुसार QR || PS सिद्ध कर सकते हैं। अर्थात् PORS एक समान्तर चतुर्भुज है

प्रश्न 2. एक चतुर्भुज ΔBCD के विकर्ण परस्पर बिन्दु O पर इस प्रकार प्रतिच्छेद करते हैं कि $\frac{AO}{BO} = \frac{CO}{DO}$ है तो सिद्ध कीजिए कि ABCD एक समलम्ब चतुर्भुज है।

हल: दिया हुआ है-

सिद्ध करना है-

ΔBCD एक समलम्ब चतुर्भुज है, इसके लिए हमें AB || CD सिद्ध करना होगा।

O से OE || AB रेखा खींची।

उपपत्ति —
$$\frac{AO}{BO} = \frac{CO}{DO}$$
 (दिया हुआ है)

या $\frac{AO}{CO} = \frac{BO}{DO}$ (1)

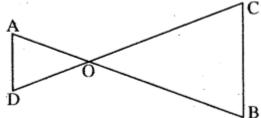
 ΔABC में $OE \parallel AB$
 \therefore $\frac{CO}{OA} = \frac{CE}{EB}$ (आधारभूत समानुपातिकता प्रमेय द्वारा)

या $\frac{OA}{CO} = \frac{EB}{CE}$ (2)

(1) व (2) से $\frac{BO}{OD} = \frac{EB}{CE}$

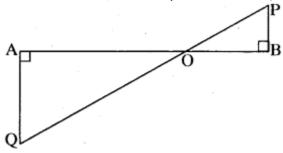
या $\frac{BO}{OD} = \frac{BE}{EC}$
 \Rightarrow $OE \parallel CD$ (3)

 ΔBCD में आधारभूत आनुपातिक प्रमेय के विलोम से)


 \therefore $OE \parallel AB$ (रचना से)(4)

(3) व (4) से

 $AB \parallel CD$


अर्थात् ABCD एक समलम्ब चतुरभुज है

प्रश्न 3. आकृति में यदि OA. OB = OC. OD है तो दर्शाइए ∠A = ∠C व ∠B =∠D

हल: $\triangle AOD$ व $\triangle BOC$ में $\triangle OA$. $\triangle OB = OC$. $\triangle OD$ दिया हुआ है। अतः $\frac{OA}{OD} = \frac{OC}{OB}$ (1) $\triangle AOD = \angle COB$ (शीर्षाभिमुख कोण)(2) (1) व (2) से $\triangle AOD \sim \triangle COB$ इसलिए $\triangle A = \triangle C$ एवं $\triangle CD = \triangle B$ (समरूप त्रिभुजों के संगत कोण) इतिसिद्धम्

प्रश्न 4. आकृति में QA तथा PB, AB पर लम्ब है यदि AB = 16 सेमी., OQ= $5\sqrt{3}$ सेमी. और OP = $5\sqrt{13}$ सेमी. है तो AO एवं BO के मान ज्ञात कीजिए।

हल:

∆AOO एवं ∆BOP में ∠OAQ = ∠OBP (प्रत्येक 90°)

∠AOQ = ∠BOP (शीर्षाभिमुख कोण)

अतः 🗚 समरूपती प्रमेय द्वारा

$$\frac{AO}{BO} = \frac{OQ}{OP} = \frac{AQ}{BP} \qquad(1)$$

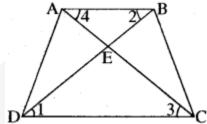
परन्तु

AB = AO + BO = 16 सेमी.

माना कि AO = x तो BO = 16 - x.

अत:
$$\frac{x}{16-x} = \frac{OQ}{OP} \quad [(1) \ \vec{H}]$$

या
$$\frac{x}{16-x} = \frac{5\sqrt{13}}{3\sqrt{13}}$$


या
$$3x = 80 - 5x$$

या 8x = 80

या x = 10 सेमी. \Rightarrow AO = 10 सेमी.

एवं BO = 16 - 10 = 6 सेमी.

प्रश्न 5. आकृति में ΔBCD एक समलम्ब चतुर्भुज है, जिसकी AB || DC है। यदि ΔAED ~ ΔBEC हो तो सिद्ध कीजिए AD = BC है।

हल: ΔΕDC एवं ΔΕΒΑ में

 $\angle 1 = \angle 2$ एवं $\angle 3 = \angle 4$ (एकान्तर कोण)

तथा ∠DEC = ∠AEB (शीर्षाभिमुख कोण)

अत: 🗚 समरूपता प्रमेय द्वारा

ΔEDC ~ ΔEBA

अत:
$$\frac{ED}{EB} = \frac{EC}{EA}$$

या $\frac{ED}{EC} = \frac{EB}{EA}$ (1)

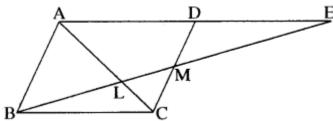
चूँकि $\Delta AED \sim \Delta BEC$

अत: $\frac{AE}{BE} = \frac{ED}{EC} = \frac{AD}{BC}$ (2)

(1) व (2) से $\frac{EB}{EA} = \frac{AE}{BE}$

या $(BE)^2 = (AE)^2$

या $BE = AE$


(2) में $BE = AE$ रखने पर

 $\frac{AE}{AE} = \frac{AD}{BC}$

या $\frac{AD}{BC} = 1$

या $AD = BC$ इतिसिद्धम्

प्रश्न 6. समान्तर चतुर्भुज ΔВСD की भुजा CD के मध्य बिन्दु М को В से मिलाने वाली रेखा АС को L पर काटती है। यदि AD व ВМ को आगे बढ़ावें तो वह E पर मिलती है तो सिद्ध कीजिए EL = 2BL

हल: ABMC व AEMD में

MC = MD (M, CD का मध्य बिन्दु है)

∠CMB =∠DME (शीर्षाभिमुख कोण)

 \angle MCB = \angle MDE (एकान्तर कोण)

अतः ASA सर्वांगसम नियम द्वारा।

 Δ BMC = Δ EMD

अतः BC = ED परन्तु AD = BC [ABCD एक समान्तर चतुर्भुज है].

और AE = AD + DE

या AE = BC + BC

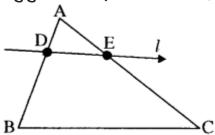
या, AE = 2BC(1)

AAEL व ACBL में ∠ALE=∠CLB (शीर्षाभिमुख कोण) 4EAL = ∠BCL (एकान्तर कोण) अतः AA समरूपता प्रमेय द्वारा

ΔAEL ~ ΔACB

$$\Rightarrow \frac{EL}{BL} = \frac{AE}{CB}$$

$$\Rightarrow \frac{EL}{BL} = \frac{2BC}{BC}$$


[समीकरण (1) से]

$$\Rightarrow \frac{EL}{BL} = 2$$

$$\Rightarrow$$
 EL = 2BL

इतिसिद्धम्

प्रश्न 7. आकृति में AABC में एक रेखा। जो BC के समान्तर है, AB और AC को क्रमशः D व E पर काटती हुई LE इस प्रकार निकलती हैं कि AD: DB = 1 : 2 हो जाता है, तो इस प्रकार बने समलम्ब चतुर्भुज BDEC एवं AADES BL क्षेत्रफलों का अनुपात ज्ञात कीजिए।

हल: चूँकि /|| BC

अत: $\angle ADE = \angle B$ एवं $\angle AED = \angle D$ (संगत कोण)

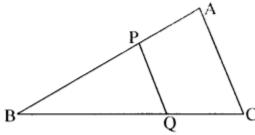
अतः AADE व AABC में

$$\angle ADE = \angle B$$

$$\Rightarrow \frac{\Delta ADE \text{ का क्षेत्रफल}}{\Delta ABC \text{ का क्षेत्रफल}} = \frac{AD^2}{AB^2} \qquad(1)$$

परन्तु
$$\frac{AD}{AB} = \frac{1}{2}$$

$$\Rightarrow \frac{AD}{AD + DB} = \frac{1}{1 + 2} = \frac{1}{3} = \frac{AD}{AB}$$
(2)
(1) व (2) से $\frac{\Delta ADE}{\Delta ABC} = \frac{1}{3} = \frac{1}{3} = \frac{1}{9}$


(1)
$$a$$
 (2) $\frac{\Delta ADE}{\Delta ABC} = \frac{1^2}{3^2} = \frac{1}{9}$

⇒
$$\triangle$$
ABC का क्षेत्रफल = 9 × \triangle ADE का क्षेत्रफल(3)

किन्तु समलम्ब चतुर्भुज BDEC का क्षेत्रफल = ΔABC का क्षेत्रफल ΔADE का क्षेत्रफल ⇒ समीकरण (3) से समलम्ब चतुर्भुज BDEC का क्षेत्रफल = 9 × ΔADE का क्षेत्रफल – ΔADE का क्षेत्रफल ⇒ समलम्ब BDEC का क्षेत्रफल = 8 × ΔADE का क्षेत्रफल

या
$$\frac{\text{समलम्ब BDEC का क्षेत्रफल}}{\Delta \text{ADE an क्षेत्रफल}} = \frac{8}{l}$$

प्रश्न 8. आकृति के अनुसार एक त्रिभुज ABC की भुजा AC के समान्तर रेखाखण्ड PQ उसकी भुजा AB और AC को इस प्रकार विभाजित करती है कि $\frac{BP}{BA} = \frac{1}{\sqrt{2}}$ हो तो सिद्ध कीजिए। रेखाखण्ड PQ, AABC को समान क्षेत्रफल में विभाजित करती है।

हल: दिया हुआ है-

ः PQ ∥ AC दिया हुआ है।

अतः ∠A = ∠BPQ (संगत कोण)

एवं 2C = \angle BQP (संगत कोण) एवं $\frac{BP}{BA} = \frac{1}{\sqrt{2}}$

अतः ΔBAC ~ ΔBPQ (AA समरूपता प्रमेय से)

सिद्ध करना है-

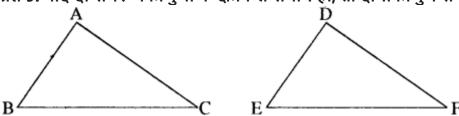
 Δ BPQ का क्षेत्रफल = समलम्ब PACQ का क्षेत्रफल या समलम्ब PACQ का क्षेत्रफल = $\frac{1}{2}\Delta BAC$ का क्षेत्रफल = Δ BPQ का क्षेत्रफल (दिया हुआ है)

अर्थात् ΔΒΡΟ का क्षेत्रफल = ΔΒΑC का क्षेत्रफल भी सिद्ध करेंगे तो प्रश्न हल हो जाएगा। उपपत्ति-

चूँकि $\Delta BAC \sim \Delta BPQ$

या ABPQ ~ ABAC

अत:
$$\frac{\Delta BPQ}{\Delta BAC}$$
 का क्षेत्रफल = $\frac{BP^2}{BA^2}$


या
$$\frac{\Delta BPQ \text{ an क्षेत्रफल}}{\Delta BAC \text{ an क्षेत्रफल}} = \frac{1^2}{\sqrt{2}^2}$$

$$\frac{\Delta BPQ}{\Delta BAC}$$
 का क्षेत्रफल = $\frac{1}{2}$

या
$$2\Delta BPQ$$
 का क्षेत्रफल = ΔBAC का क्षेत्रफल

इतिसिद्धम्

प्रश्न 9. यदि दो समरूप त्रिभुजों के क्षेत्रफल समान हों, तो दोनों त्रिभुज सर्वांगसम होते हैं।

हल: दिया हुआ है

 $\triangle ABC \sim \triangle DEF$ एवं $\triangle ABC$ का क्षेत्रफल = $\triangle DEF$ का क्षेत्रफल

सिद्ध करना है-

 $\triangle ABC = \triangle DEF$

उपपत्ति-

∴ ΔABC ~ ΔDEF

ΔABC एवं ΔDEF समानकोणिक त्रिभुज हैं।

एवं
$$\dfrac{\Delta ABC}{\Delta DEF}$$
 का क्षेत्रफल $=\dfrac{BC^2}{EF^2}$ या $1=\dfrac{BC^2}{EF^2}$ (दोनों त्रिभुजों का क्षेत्रफल समान है, दिया हुआ है) या $BC^2=EF^2$ या $BC=EF$ (1) \Rightarrow ΔABC व ΔDEF में $\angle B=\angle E$ (समानकोणिक त्रिभुज से) $BC=EF$ [(1) से] $\angle C=\angle F$ (समानकोणिक त्रिभुज से)

अत: ASA सर्वांगसम प्रमेय से

ΔABC ≅ ΔDEF

प्रश्न 10. किसी समबाहु त्रिभुज ABC की भुजा BC पर एक बिन्दु DI इस प्रकार स्थित है कि $BD = \frac{1}{3}BC$ है, तो सिद्ध कीजिए $9AD^2 = 7AB^2$ है। (माध्य. शिक्षा बोर्ड, मॉडल पेपर, 2017-18)

हल: .. ΔABC एक समबाहु त्रिभुज है और A से BC पर AE लम्ब डाला है। अतः किसी भी शीर्ष से सम्मुख भुजा पर डाला गया लम्ब उसका समद्विभाजन करता है।

अत: BE = EC =
$$\frac{1}{2}$$
BC [रचना से]

तथा
$$BD = \frac{1}{3}BC$$
 [दिया हुआ है]

AB = BC = CA [दिया हुआ है] एवं समकोण $\triangle ABE$ में $AB^2 = AE^2 + BE^2$

या
$$AE^2 = AB^2 - BE^2$$

या
$$AE^2 = AB^2 - \left(\frac{1}{2}BC\right)^2$$

या
$$AE^2 = AB^2 - \frac{BC^2}{4}$$

या
$$AE^2 = \frac{4AB^2 - BC^2}{4}$$

समकोण ΔADE में

$$AD^2 = AE^2 + DE^2$$

या
$$AE^2 = AD^2 - DE^2$$

या
$$AE^2 = AD^2 - (BE - BD)^2$$

या
$$AE^2 = AD^2 - \left(\frac{1}{2}BC - \frac{1}{3}BC\right)^2$$

$$\left[\because BE = \frac{1}{2}BC \ \forall \vec{a} \ BD = \frac{1}{3}BC\right]$$

 $\therefore BE = \frac{1}{2}BC$

....(1)

या
$$AE^2 = AD^2 - \left(\frac{BC}{6}\right)^2$$

या
$$AE^2 = \frac{36AD^2 - BC^2}{36}$$
(2)

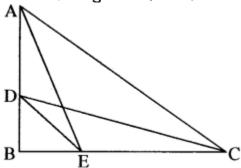
(1)
$$=$$
 (2) $\stackrel{?}{\leftrightarrow} \frac{4AB^2 - BC^2}{4} = \frac{36AD^2 - AB^2}{36}$

या
$$\frac{4AB^2 - AB^2}{4} = \frac{36AD^2 - AB^2}{36}$$
 [: AB = BC = CA]

या
$$\frac{3AB^2}{4} = \frac{36AD^2 - AB^2}{36}$$

या
$$27AB^2 = 36AD^2 - AB^2$$

या $28AB^2 = 36AD^2$


या
$$28AB^2 = 36AD^2$$

या
$$7AB^2 = 9AD^2$$

अर्थात्
$$9AD^2 = 7AB^2$$

इतिसिद्धम्

प्रश्न 11. ABC एक समकोण त्रिभुज है, जिसका ∠B समकोण है। माना कि D और E क्रमशः AB एवं BC पर दो बिन्दु स्थित हैं। सिद्ध कीजिए AE² + CD² = AC² + DE² (माध्य. शिक्षा बोर्ड, 2018)

हल: $\triangle ABE$ समकोण त्रिभुज है तथ $\angle B = 90^{\circ}$

$$\therefore AE^2 = AB^2 + BE^2 \qquad \dots (1)$$

पुन:
$$\Delta DBC$$
 समकोण त्रिभुज है और $\angle B = 90^{\circ}$ $CD^2 = BD^2 + BC^2$ (2)

(1) व (2) को जोड़ने पर

$$AE^2 + CD^2 = (AB^2 + BC^2) + (BE^2 + BD^2)$$
(3)

इसी प्रकार समकोण ΔABC एवं समकोण ΔDBE में

$$AC^2 = AB^2 + BC^2$$
 एवं $DE^2 = BE^2 + BD^2$ (4)

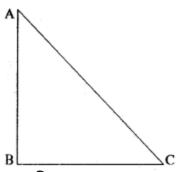
(3) व (4) से

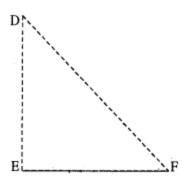
$$AE^2 + CD^2 = AC^2 + DE^2$$
 इतिसिद्धम्

प्रश्न 12. सिद्ध कीजिए कि यदि किसी त्रिभुज की एक भुजा का वर्ग अन्य दो भुजाओं के वर्गों के योग के बराबर हो, तो पहली भुजा का सम्मुख कोण समकोण होता है।

हल: दिया है-

एक त्रिभुज ABC है जिसमें $AC^2 = AB^2 + BC^2$


सिद्ध करना है-


∠ABC = 90°

रचना-

एक अन्य त्रिभुज DEF इस प्रकार बनाया कि DE = AB, EF = BC

∠E = 90°

उपपत्ति-

यह सिद्ध करने के लिए कि ∠ABC = 90° है, हमें केवल यह सिद्ध करना होगा कि ΔABC ~ ΔDEF है। ∴ ΔDEF एक समकोण त्रिभुज है जिसमें ∠DEF समकोण है। अतः पाइथागोरस प्रमेय से

DF² = DE² + EF²

⇒ DF² = AB² + BC²

[∴ DE = AB तथा 'EF = BC (रचना से)]

⇒ DF² = AC² [∴ दिया है कि AB² + BC² = AC²]

⇒ DF = AC(i)

अत:
$$\Delta$$
ABC और Δ DEF में

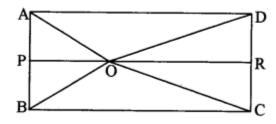
AB = DE (रचना से)

BC = EF (रचना से)

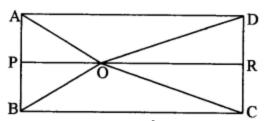
BC = EF (रचना से)

अत: सर्वांगसमता की SSS कसौटी से

 Δ ABC \cong Δ DEF


⇒ Δ B = Δ E

[∴ सर्वांगसम त्रिभुजों के संगत कोण समान होते हैं।]


⇒ Δ B = Δ E = 90° [∴ Δ E = 90° (रचना से)]

अत: Δ ABC एक समकोण त्रिभुज है। (इतिसिद्धम्)

प्रश्न 13. आयत $\triangle BCD$ के अन्दर स्थित O कोई बिन्दु है, सिद्ध कीजिए $OB^2 + OD^2 = OA^2 + OC^2$

हल: आयत ΔBCD के AN अन्दर एक बिन्दु Ο स्थित है जिससे गुजरती हुई BC के समान्तर रेखा PL भुजाओं AB और DC को क्रमशः P और B पर काटती है।

समकोण त्रिभुजों OPB और ORD में पाइथागोरस प्रमेय से $OB^2 = OP^2 + PB^2$ और $OD^2 = OR^2 + DR^2$

इन दोनों को जोडने पर

$$= OB^2 + OD^2 = Op^2 + PB^2 + OR^2 + DR^2$$

$$= OB^2 + OD^2 = (OP^2 + OR^2) + (PB^2 + DR^2)$$
(i)

पुनः 'समकोण त्रिभुजों ORC तथा OPA में पाइथागोरस प्रमेय से

$$OC^2 = OR^2 + RC^2$$
 तथा $OA^2 = OP^2 + PA^2$

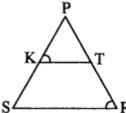
इन दोनों को जोड़ने पर

$$\Rightarrow$$
 OC² + OA² = OR² + RC² + OP² + PA²

$$\Rightarrow$$
 OC² + OA² = OR² + OP² + RC² + PA²

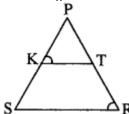
$$\Rightarrow$$
 OC² + OA² = OR² + OP² + PB² + DR²

$$\Rightarrow$$
 OC² + OA² = (OR² + OP²) + (PB² + DR²)(ii)


(i) व (ii) से

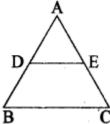
$$OB^2 + OD^2 = OC^2 + OA^2$$

$$\Rightarrow$$
 OB² + OD² = OA² + OC²


(इतिसिद्धम्)

प्रश्न 14. निम्न में से दी गई आकृति में $\frac{PK}{KS} = \frac{PT}{TR}$ हैं तथा $\angle PKT = \angle PRS$ है। सिद्ध कीजिए कि APSR एक समद्विबाहु त्रिभुज है।

हल: प्रश्नानुसार दिया गया है $\frac{PK}{KS} = \frac{PT}{TR}$


अतः KT || SR

: ∠PKT = ∠PSR (संगत कोण)(i)

साथ ही यह दिया हुआ है कि ∠PKT = ∠PRS(ii) अतः ∠PRS = ∠PSR [(i) व (ii) से] इसलिए PS = PR (समान कोणों की सम्मुख भुजाएँ) अर्थात् APSR एक समद्विबाहु त्रिभुज है। (इतिसिद्धम्)

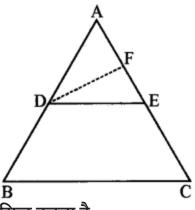
प्रश्न 15. दी गई आकृति में ABC एक त्रिभुज है। यदि $\frac{\mathrm{AD}}{\mathrm{AB}} = \frac{\mathrm{AE}}{\mathrm{AC}}$ सिद्ध कीजिए DE \parallel BC

हल: दिया गया है-

$$\frac{AD}{AB} = \frac{AE}{AC}$$
$$\frac{AB}{AD} = \frac{AC}{AE}$$

या

दोनों पक्षों में 1 घटाने पर


या
$$\frac{AB}{AD} - 1 = \frac{AC}{AE} - 1$$

$$\frac{AB - AD}{AD} = \frac{AC - AE}{AE}$$

$$\frac{BD}{AD} = \frac{EC}{AE}$$

$$\frac{AD}{AD} = \frac{AE}{EC}$$

अतः एक त्रिभुज की भुजाओं AB एवं AC को DE समान अनुपात में विभाजित करती है।

सिद्ध करना है-

DE || BC

रचना-

D से जाने वाली एक अन्य रेखा DF खींची।

उपपत्ति-

माना कि रेखा DE भुजा BC के समान्तर नहीं है तथा D से. होकर जाने वाली एक अन्य रेखा DF भुजा BC के समान्तर है।

अर्थात् DF || BC

अतः आधारभूत आनुपातिकता प्रमेय से,

$$\frac{AD}{DB} = \frac{AF}{FC} \qquad(1)$$

लेकिन दिया हुआ है

$$\frac{AD}{DB} = \frac{AE}{EC} \qquad(2)$$

समी. (1) तथा (2) को बराबर करने पर

$$\frac{AF}{FC} = \frac{AE}{EC}$$

दोनों पक्षों में 1 जोड़ने पर

या
$$\frac{AF}{FC} + 1 = \frac{AE}{EC} + 1$$
$$\frac{AF + FC}{FC} = \frac{AE + EC}{EC}$$

या
$$\frac{AC}{FC} = \frac{AC}{EC}$$
 या
$$FC = EC$$

यह तब ही सम्भव है जब F एवं E दोनों बिन्दु सम्पाती हों, अर्थात् DF एवं DE सम्पाती रेखाएँ हैं अतः DE || BC इतिसिद्धम्