अध्याय - 2

एक चर वाले ैैखिक समीकरण
 (Linear Equation in one variable)

2.1 भूमिका

पलक और खुशबू बीजीय व्यंजकों एवं समीकरणों पर आधारित सवालों को हल कर रही हैं आइए उनकी मदद करें-

आपने ऊपर दिए गए प्रश्नों को हल करते हुए देखा कि इनमें " $=$ " चिह्न का प्रयोग किया गया है जिसका अर्थ है इसमें दायाँ पक्ष व बायाँ पक्ष बराबर है। इन्हें समीकरण कहते हैं,

कुछ रैखिक व्यंजक नीचे दिए गए हैं। $\begin{aligned} & x+3 \text { से क्या आप } x \text { का } \\ & \text { मान निकाल सकते हैं? }\end{aligned}$

$$
3 x, 3 x+1,12 x+5, \frac{5}{4}(x-4) \quad \text { सोचिए ये रैखिक व्यंजक क्यों हैं? }
$$

ये रैखिक व्यंजक नहीं हैं

$$
\begin{aligned}
& x^{2}+3, y+y^{2}, 1+x+x^{2} \\
& \text { (ध्यान दीजिए यहाँ चर की अधिकतम घात } 1 \text { से अधिक है) }
\end{aligned}
$$

इस अध्याय में हम एक चरवाले रैखिक समीकरणों के बारे में पढ़ेंगे। इनमें एक चरवाले रैखिक व्यंजकों का प्रयोग होता है। बीजीय समीकरण वास्तव में चरों पर एक शर्त वाली समता होती है। आइए, चरों को कुछ शर्तों से
$3 x, 3 x+1$ रैखिक व्यंजक है जबकि $3 x=6$ व $3 x+1=4$ रैखिक समीकरण जोड़कर समीकरण बनाएँ।
(i) एक संख्या के 5 गुने में 10 जोड़ने पर 30 मिलता है।

यदि मान लीजिए वह संख्या x है तो
सर्व शिक्षा — 2013-14 (निःशुल्क)

उस संख्या का 5 गुना होगा $=5 \times x=5 x$
अब इसमें 10 जोड़ते हैं $5 x+10$
शर्तानुसार यह 30 के बराबर हुआ
अत: $5 x+10=30$ (यह बन गया एक चरवाला रैखिक समीकरण)
(ii) किसी संख्या में से 2 घटाकर यदि 4 से गुणा करें तो 12 मिलता है।

यदि मान लीजिए कि वह संख्या x है तो
संख्या में से 2 घटाने पर $x-2$ हुआ।
अब हमें प्राप्त $(x-2)$ को 4 से गुणा करना है।

$$
4 \times(x-2)=4(x-2)
$$

शर्तानुसार जो कि 12 के बराबर है
अतः $4(x-2)=12$ यह एक समीकरण हुआ।

स्वयं करके देखिए

समीकरण बनाइए-

1. किसी संख्या का 4 गुणा 40 है।
2. किसी संख्या का दोगुना उस संख्या के 5 गुने से 21 कम है।
3. रमेश की वर्तमान आयु उसकी 5 वर्ष पहले की आयु की दोगुनी है।

आइए अब हम दिए गए समीकरणों का हल करना सीखें।
समीकरण के दोनों पक्ष तुला (तराजू) के दो संतुलित पलड़ों के समान हैं। यदि दोनों पक्षों में समान गणितीय संक्रियाएँ की जाएँ तो भी समीकरण संतुलित ही रहता है। हाँ, ऐसा करने से उसका स्वरूप अवश्य बदल जाएगा।
$2 x-7=15 \quad$ (दोनों पलड़ों में 7 जोड़ने पर)

$2 x-7+7=15+7$
$2 x=22$ तराजू संतुलित रहेगा

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{22}{2} \text { (दोनों पक्षों में } 2 \text { का भाग देने पर) } \\
& x=11 \text { हल }
\end{aligned}
$$

2.2 समीकरण को हल करना, जिनके एक पक्ष में बीजीय व्यंजक एवं दूसरे पक्ष में केवल चर हो-
हमने पिछली कक्षाओं में भी ऐसे समीकरणों का हल प्राप्त किया है। आइए, हम कुछ उदाहरणों द्वारा उन्हें पुनः समझें।
उदाहरण-1. हल ज्ञात कीजिए-

$$
2 x+4=12
$$

हल : चरण-1 दोनों पक्षों में से 4 घटाने पर

$2 x+4-4=12-4$ (संतुलन नहीं बिगड़ा)
या $2 x=8$
चरण-2 दोनों पक्षों को 2 से भाग करने पर

$$
\frac{2 x}{2}=\frac{8}{2}
$$

$$
x=4
$$

उत्तर को जाँचने के लिए आप हल को पुनः समीकरण में रख " $=$ " समता देख सकते हैं।

$$
\begin{aligned}
& 2 x+4=12 \\
& 2 \times 4+4=12 \\
& 8+4=12 \\
& 12=12 \text { का मान } \\
& \text { अतः हल सही है। }
\end{aligned}
$$

उदाहरण-2. हल ज्ञात कीजिए-

$$
\frac{2 x}{5}-3=7
$$

सर्व शिक्षा — 2013-14 (निःशुल्क)

हल : $\frac{2 x}{5}-3=7$ या $\frac{2 x}{5}-3+3=7+3$ (दोनों पक्ष में 3 जोड़ने पर)

$$
\begin{array}{lrl}
\text { या } & \frac{2 x}{5}=10 & \text { संतुलन नहीं बिगड़ा } \\
\text { या } & \frac{2 x}{5} \times 5=10 \times 5 & \\
\text { (दोनों पक्ष में } 5 \text { से गुणा करने पर) } \\
\text { या } 2 x=50 & & \text { संतुलन नहीं बिगड़ा } \\
\text { या } \frac{2 x}{2}=\frac{50}{2} & & \text { (दोनों पक्ष में } 2 \text { से भाग देने पर) } \\
& x=25 &
\end{array}
$$

सीधे पक्षांतरण से
दिया गया है।

$\frac{2 x}{5}-3=7$	
या $\left.\begin{array}{ll}\frac{2 x}{5}=7+3 & (-3 \text { का पक्षांतरण करने पर }+3 \text { हुआ) } \\ \text { या } \frac{2 x}{5}=10 & \begin{array}{l}\text { ध्यान दीजिए यहां } 5 \text { का पक्षांतरण में चिह्न नहीं } \\ \text { बदला। गुणा या भाग द्वारा जुड़े हुए चर या अचर } \\ \text { या पक्षांतरण करने पर वे क्रमशः भाग या गुणा में } \\ \text { या } 2 x=10 \times 5 \\ \text { या जाते है किन्तु उनका चिह्न नहीं बदलता। } \\ 2 x=50\end{array} \\ \text { या } x=\frac{50}{2} & \end{array}\right\}$	

व्यवहारतः हम समीकरणों के हल में पक्षांतरण विधि का प्रयोग करते हैं पक्षांतरण विधि समीकरण को हल करने की संक्षिप्त विधि है। आगे हम पक्षांतरण विधि का उपयोग करेंगे।

उदाहरण-3. हल ज्ञात कीजिए

$$
x+\frac{x}{4}=20
$$

हल : $x+\frac{x}{4}=20$

या $x \times 1+x \times \frac{1}{4}=20$
या $x\left(1+\frac{1}{4}\right)=20$
या $x\left(\frac{1}{1}+\frac{1}{4}\right)=20$
या $x\left(\frac{4+1}{4}\right)=20$

या
$x \times \frac{5}{4}=20$
या $\frac{5 x}{4}=20$
यT
या $x=\frac{20 \times 4}{5}$
या
$x=4 \times 4$
$x=16$
$\left(\because x=x \times 1, \frac{x}{4}=x \times \frac{1}{4}\right)$
(x सार्व लेने पर)

स्वयं करक देखिए
हल कीजिए-
(i) $5 x+4=9$
(ii) $\frac{5}{2}+2 x=\frac{15}{4}$
(iii) एक व्यक्ति के पास सिक्कों की चौथाई संख्या से 2 कम संख्या में नोट है। यदि नोटों की संख्या 19 है तो सिक्कों की संख्या क्या होगी?
(Hint- सिक्कों की संख्या x मान हल करें)
सर्व शिक्षा — 2013-14 (नि:शुल्क)

प्रश्नावली-2.1

निम्नलिखित समीकरणों का हल ज्ञात कीजिए-

1. $3(x-3)=15$
2. $\frac{x}{2}-7=15$
3. $\frac{-2 x}{7}+2=8$
4. $7-3 x=18$
5. $18=40-3 x$
6. $\frac{25}{6}-9 y=11$
7. $2.4=\frac{x}{2.5}-1$
8. $3 x+10=1$
9. $2\left(x+\frac{11}{4}\right)=13$
10. $\frac{x}{3}+\left(\frac{-14}{3}\right)=\frac{3}{7}$

2.3 अनुप्रयोग

समीकरण के द्वारा हम तार्किक एवं दैनिक जीवन पर आधारित गणितीय समस्याओं का हल प्राप्त करते हैं। आइए कुछ उदाहरणों द्वारा इसे समझें।
उदाहरण-4. दो संख्याओं का योग 15 है। यदि एक संख्या दूसरी से 5 अधिक है तो दोनों संख्याएँ ज्ञात कीजिए।
हल : सर्वप्रथम हम दिए गए कथन से समीकरण बनाते हैं, इसके लिए अज्ञात को चर मानते हुए शुरू करते हैं।

माना कि छोटी अज्ञात संख्या x है।
प्रश्नानुसार,
बड़ी अज्ञात संख्या = छोटी अज्ञात संख्या से 5 अधिक

$$
=x+5
$$

पुनः \because दोनों संख्या का योग $=15$
$\therefore x+(x+5)=15$
या $x+x+5=15$
या $2 x+5=15$
या $2 x=15-5$

या $2 x=10$
या $x=\frac{10}{2}$
या $x=5$
\therefore संख्याएँ $x=5$ एवं $x+5=5+5=10$
अर्थात संख्याएँ 5 एवं 10 हैं।
उदाहरण-5. $\frac{-8}{3}$ के दोगुने से 1 अधिक में से क्या घटाएँ कि $\frac{2}{7}$ मिले? हल : $\frac{-8}{3}$ के दो गुने से 1 अधिक $=2\left(\frac{-8}{3}\right)+1$

माना कि $2\left(\frac{-8}{3}\right)+1$ में से x घटाने पर $\frac{2}{7}$ प्राप्त होता है, तो समीकरण,

$$
2\left(\frac{-8}{3}\right)+1-x=\frac{2}{7}
$$

या $\frac{-16}{3}+\frac{1}{1}-x=\frac{2}{7}$
या $\frac{-16+3}{3}-x=\frac{2}{7}$
या $\frac{-13}{3}-x=\frac{2}{7}$
या $-x=\frac{2}{7}+\frac{13}{3}$
या $-x=\frac{6+91}{21}=\frac{97}{21}$
या $-x=\frac{97}{21}$

या $(-x)(-1)=\frac{97}{21} \times(-1)$
$\therefore \quad x=\frac{-97}{21}$
उदाहरण-6. एक आयत की लम्बाई और चौड़ाई का अनुपात $3: 2$ है और उसकी परिमिति 30 मी. हो तो, उसकी लम्बाई एवं चौड़ाई ज्ञात कीजिए।
हल : माना कि आयत की लम्बाई $3 x$ है तो उसकी चौड़ाई $2 x$ होगी।
आयत की परिमिति $=2$ (लम्बाई + चौड़ाई)
\therefore प्रश्नानुसार,

उदाहरण-7. जूली की माँ की वर्तमान उम्र जूली की वर्तमान उम्र के तिगुने से 1 वर्ष कम है, यदि 5 वर्ष पहले उनके उम्रों का योग 29 वर्ष था तो उनकी वर्तमान उम्र क्या होगी ? हल : माना कि जूली की वर्तमान उम्र x है।

	जूली	माँ	योग
वर्तमान आयु	x	$3 x-1$	
5 वर्ष पूर्व आयु	$x-5$	$3 x-1-5$ $=3 x-6$	पाँच वर्ष पूर्व जूली व उसकी माँ की (3x-6 आयु का योग 29
था।			

प्रश्नानुसार,

या

$$
(x-5)+(3 x-6)=29
$$

$$
x-5+3 x-6=29
$$

या $4 x-11=29$
या $4 x=29+11$
या $4 x=40$

या $x=\frac{40}{4}$
या $x=10$
अतः जूली की वर्तमान उम्र $x=10$ वर्ष
अतः जूली की माँ की वर्तमान उम्र $=3 x-1=3 \times 10-1=30-1=29$ वर्ष
उदाहरण-8. बंटी के पास 2 रुपये के एवं सोनू के पास 5 रुपये के कुछ सिक्के हैं, यदि बंटी के पास सिक्को की संख्या सोनू के पास के सिक्कों की संख्या के तिगुने से दो कम है और उनके पास के सभी सिक्कों का कुल मूल्य 51 रुपये हैं तो प्रत्येक के पास कितनी राशियाँ हैं।
हल : माना कि सोनू के पास x सिक्के हैं
\because सोनू के पास 5 रुपये के सिक्के हैं
$\therefore \quad$ सोनू के पास कुल राशि $=5 x$
प्रश्नानुसार,
बंटी के पास कुल सिक्के $=3 x-2$
बंटी के पास कुल राशि $=2 \times(3 x-2) \quad(\because$ बंटी के पास 2 रुपये के सिक्के हैं) अब प्रश्नानुसार,

सोनू के पास राशि + बंटी के पास राशि $=51$
या $\quad 5 x+2(3 x-2)=51$
या $5 x+6 x-4=51$
या $11 x=51+4$
या $11 x=55$
या $x=\frac{55}{11}$
$\therefore \quad x=5$
सर्व शिक्षा — 2013-14 (निःशुल्क)
\therefore सोनू के पास राशि $=5 x=5 \times 5=25$ रु.
बंटी के पास राशि $=2(3 x-2)=2 \times(3 \times 5-2)=2(15-2)=2 \times 13=26$ रु.
उदाहरण-9. तीन क्रमागत विषम संख्याओं का योग 93 है तो संख्याएँ ज्ञात कीजिए।
हल : माना कि सबसे छोटी विषम संख्या x है
अन्य दोनों लगातार विषम संख्याएँ क्रमशः $(x+2)$ एवं $(x+4)$ हैं।
(\because दो लगातार विषम संख्याओं का अंतर 2 होता है)
\therefore प्रश्नानुसार,

\therefore विषम संख्याएँ $x=29$

$$
\begin{aligned}
& x+2=29+2=31 \\
& x+4=29+4=33
\end{aligned}
$$

प्रश्नावली — 2.2

1. यदि किसी संख्या के आधे में से $\frac{1}{4}$ घटाया जाय तो $\frac{1}{8}$ प्राप्त होता है। संख्या ज्ञात कीजिए।
2. यदि किसी आयत की लम्बाई और चौड़ाई का अंतर 5 मी. हो और परिमिति 110 मी. हो तो लम्बाई एवं चौड़ाई ज्ञात करें।
3. चीनी के मूल्य में 25 प्रतिशत की वृद्धि होने पर अब 1 किग्रा. चीनी का मूल्य 32 रु. है तो प्रारम्भ में चीनी का मूल्य प्रति किग्रा. क्या था?
4. दो विभिन्न मूल्य वाली 35 कलमों का कुल मूल्य 60 रु. है। यदि 1 सस्ती कलम का मूल्य 1.50 रु. एवं 1 महँगी कलम का मूल्य 2 रु. है तो कितनी महँगी कलमें खरीदी गई?
5. एक त्रिभुज के तीनों कोण $2: 3: 5$ के अनुपात में हैं तो उनके तीनों कोण ज्ञात कीजिए।
6. बिल्लू के पास 1 रु., 2 रु. एवं 5 रु. के कुल 160 सिक्के हैं जिनका कुल मूल्य 300 रु. है। यदि 2 रु. के सिक्कों की संख्या 5 रु. के सिक्कों की संख्या की तिगुनी हो तो उसके पास प्रत्येक प्रकार के कितने सिक्के हैं?
7. पिता ने अपने तीन संतानों के बीच अपनी संपत्ति का बँटवारा $1: 2: 3$ के अनुपात में करता है और अपने लिए 100000 रु. रखता है। यदि उसकी कुल संपत्ति 2.5 लाख रु. की हो तो प्रत्येक संतान को हिस्से के रूप में क्या मिला?
8. 11 के लगातार तीन गुणजों का योग 231 है तो उन्हें ज्ञात कीजिए।
9. संकुल संसाधन केन्द्र म.वि. फरना में आयोजित बाल मेले में प्रत्येक विजेता छात्र को 2 कलम एवं विजेता को छोड़कर शेष सभी प्रतिभागियों को 1 कलम दिया गया। यदि 100 छात्रों के बीच 120 कलम दिए गए तो विजेताओं की संख्या ज्ञात कीजिए।
10. रवि के पिता की वर्तमान उम्र रवि के वर्तमान उम्र के तिगुने से 5 वर्ष अधिक है। 5 वर्ष बाद उनकी उम्रों का योग 47 वर्ष होगा। दोनों की वर्तमान उम्र ज्ञात कीजिए।

2.4 समीकरण हल करना जब दोनों ही पक्षों में चर उपस्थित हो

समीकरण एक समिका होती है जिसके दोनों पक्षों में चर उपस्थित हो सकते हैं। ऐसे समीकरण का हल हम निम्नलिखित उदाहरणों में देखेंगे।

उदाहरण-10. हल कीजिए-

$$
2 x+3=x+8
$$

हल : $2 x+3=x+8$
$2 x+3-x=x+8-x \quad$ (दोनों पक्षों से x घटाने पर)
या $2 x+3-x=8$ - सीधे पक्षांतरण द्वारा भी कर सकते हैं।
या $x+3=8$
या $x=8-3$
$\therefore x=5$
सर्व शिक्षा — 2013-14 (नि:शुल्क)

दोनों पक्षों में चर रहने पर चर को एक पक्ष करने के लिए उसका पक्षांतरण करते हैं। इसके लिए उन चरों या चरों से युक्त पदों को उन्हीं तरीकों से पक्षांतरण करते हैं जैसे संख्याओं का करते हैं। जैसे- यदि $2 x=x+1$ तो $2 x-x=1$

उदाहरण-11. हल ज्ञात कीजिए-

$$
5 x-\frac{7}{2}=14-\frac{3}{2} x
$$

हल : $5 x-\frac{7}{2}=14-\frac{3 x}{2}$
या $5 x+\frac{3 x}{2}=14+\frac{7}{2}$
या $\frac{5 x}{1}+\frac{3 x}{2}=\frac{14}{1}+\frac{7}{2}$
या $\frac{5 x \times 2+3 x}{2}=\frac{14 \times 2+7}{2}$
या $\frac{10 x+3 x}{2}=\frac{28+7}{2}$
या $\frac{13 x}{2}=\frac{35}{2}$
या $13 x=\frac{35}{2} \times 2$
या $13 x=35$
$\therefore \quad x=\frac{35}{13}=2 \frac{9}{13}$

2.5 समीकरण को सरल रूप में बदलकर हल करना

उपर्युक्त दो उदाहरणों में आपने देखा कि कठिन दिखनेवाले समीकरण भी कुछ चरण की संक्रिया के बाद सरल रैखिक समीकरण के रूप में आ जाते हैं, जिन्हें हल किया जा सकता

है। वज्ञ गुणन द्वारा सरल करने पर कुछ परिमेय रूपवाले समीकरण, सरल समीकरण के रूप में आ जाते हैं।

दिया गया है,

$$
\frac{x+1}{2}=\frac{x-1}{3}
$$

आप सोचिए, यदि दोनों पक्षों में हर को विलुप्त करना हो तो आप क्या करेंगे।

$$
\left(\frac{x+1}{2}\right) \times 2 \times 3=\left(\frac{x-1}{3}\right) \times 2 \times 3
$$

या $(x+1) 3=(x-1) 2$ (दोनों पक्षों को 2×3 से गुणा करने पर)
दोनों पक्षों से हर विलुप्त हो गया समीकरण संतुलित रहा।
अब यदि आप वज्र गुणन से L.H.S. अतः बायें पक्ष के हर को सीधे, दायें पक्ष के अंश से गुणा करें, वह इसी प्रकार दायें पक्ष के हर को बायें पक्ष के अंश से-

$$
\frac{(x+1)}{2}-\frac{(x-1)}{3} \text { तो भी आपको समान रूप ही प्राप्त होता । }
$$

तो तिर्यक् गुणन के बाद,

$$
3 \times(x+1)=2(x-1)
$$

इस तथ्य के अलावा अन्य गणितीय संक्रिया का भी उपयोग समीकरण को सरल करने में करते हैं। अब निम्नलिखित उदाहरणों द्वारा कठिन समीकरण को सरल करके उनका हल करते हैं।
उदाहरण-12. हल ज्ञात कीजिए-

$$
\frac{6 x+1}{3}+1=\frac{x-3}{6}
$$

हल : $\frac{6 x+1}{3}+1=\frac{x-3}{6}$
या $\frac{6 x+1}{3}+\frac{1}{1}=\frac{x-3}{6}$

या $\frac{6 x+1+3}{3}=\frac{x-3}{6}$
या $\frac{6 x+4}{3}=\frac{x-3}{6}$
या $6(6 x+4)=3(x-3)$ (तिर्यक् गुणा करने पर)
या $36 x+24=3 x-9$
या $36 x-3 x=-9-24$
या $33 x=-33$
या $x=\frac{-33}{33}$
$\therefore \quad x=-1$
उदाहरण-13. हल ज्ञात कीजिए-

$$
\frac{x+1}{2 x+3}=\frac{3}{8}
$$

हल : $\frac{x+1}{2 x+3}=\frac{3}{8}$
या $(x+1) \times 8=3 \times(2 x+3)$ (तिर्यक् गुणा से)
या $8 x+8=6 x+9$
या $8 x-6 x=9-8$
या $2 x=1$
$\therefore \quad x=\frac{1}{2}$
उदाहरण-14. किसी आयत की आसन्न भुजाएँ $4: 3$ के अनुपात में है। यदि प्रत्येक 5 मी. से बढ़ जाए तो उनका अनुपात $5: 4$ हो जाता है तो भुजाएँ ज्ञात कीजिए।
हल : माना कि आयत की आसन्न भुजाएँ $4 x$ एवं $3 x$ हैं।
प्रत्येक में 5 मी. की वृद्धि होने पर भुजाएँ $4 x+5$ एवं $3 x+5$ होगी।

प्रश्नानुसार,

$$
\frac{4 x+5}{3 x+5}=\frac{5}{4}
$$

या $4(4 x+5)=5(3 x+5)$
(तिर्यक् गुणा करने पर)
या $16 x+20=15 x+25$
या $16 x-15 x=25-20$
$\therefore \quad x=5$
\therefore आसन्न भुजाएँ, $4 x=4 \times 5=20$ मी.

$$
3 x=3 \times 5=15 \text { मी. }
$$

प्रश्नावली - 2.3

निम्नलिखित समीकरणों का हल ज्ञात कीजिए-

1. $\frac{7-6 x}{9 x}=\frac{1}{15}$
2. $\frac{z}{4}=\frac{z+15}{9}$
3. $x^{2}-(x-2)^{2}=32$
4. $(x+4)^{2}-(x-5)^{2}=9$
5. $(y+3)(y-3)-y(y+5)=6$
6. $\frac{5 x-4}{6}=4 x+1-\frac{3 x+10}{2}$
7. $\frac{4 y+1}{3}+\frac{2 y-1}{2}-\frac{3 y-7}{5}=\frac{47}{10}$
8. $\frac{0.3+0.7 x}{x}=0.95$
9. $\frac{15(2-x)-5(x+6)}{1-3 x}=6$
10. दो अंकों की संख्या का दहाई अंक, इकाई अंक का तिगुना है। यदि अंक बदल दिए जाएँ तो प्राप्त संख्या मूल संख्या से 36 कम हो जाती है। वह संख्या ज्ञात कीजिए।
11. एक नाव धारा की दिशा में एक घाट से दूसरे घाट तक जाने में 9 घंटे लगाती है। धारा की विपरीत दिशा में यही दूरी 10 घंटे में पूरा करती है। यदि धारा की चाल 1 किमी. / प्रति घंटा हो तो शांत जल में नाव की चाल एवं दोनों घाटों के बीच की दूरी ज्ञात कीजिए।
