अध्याय - 3

 ज्यामितीय आकृतियों की समझ

 ज्यामितीय आकृतियों की समझ
 (UNDERSTANDING OF GEOMETRICAL SHAPES)

बहुभुज (Polygon)

3.1 भूमिका

पिछली कक्षा में हमने रेखाओं के बारे में सीखा है। आइए, हम अपने नोट बुक के पेपर पर पेंसिल रखें तथा बिना उसे उठाए रेखा खींचने की गतिविधि करें। आप भी बिना पेंसिल उठाए अधिक से अधिक तरह की आकृतियाँ बनाइए। आपके द्वारा रेखा खींचने से बनी आकृतियाँ निम्न प्रकार की हो सकती हैं:

1

2
3

4

5

6

7

उपर की आकृतियों को ध्यान से देखिए। सोचिए ऊपर की आकृतियों के अलावे आपने जो अन्य आकृतियाँ बनाई हैं, उनमें से कौन-कौनसी सरल हैं? आकृति 7 को छोड़कर बाकी सभी आकृतियाँ सरल हैं क्योंकि ये कहीं भी स्वयं को नहीं काटती हैं। आकृति 5 एवं 6 सरल बंद आकृतियाँ हैं। आकृति $1,2,3$ एवं 4 बंद आकृतियाँ नहीं हैं परन्तु सभी सरल आकृतियाँ है?

स्वयं करके देखिए

1. नीचे रेखाखंडों से बनी कुछ सरल आकृतियाँ दी गई हैं, इनमें से बंद तथा खुली आकृतियाँ छाँटिए।

.......................
.......................... \qquad
\qquad
\qquad
2. पाँच-पाँच सरल खुली व सरल बंद आकृतियाँ बनाइए। पाँच-पाँच खुली व बंद ऐसी आकृतियाँ बनाइए जो सरल न हों।

गतिविधि

कक्षा के सभी बच्चे छोटे-छोटे समूहों में बैठ जायेंगे। सभी समूह के पास एक ही माप की बाँस की कुछ कमाचियाँ एवं साइकिल के वॉल-ट्यूब के कुछ टुकड़े रहेंगे। शिक्षक सभी बच्चों को निर्देशित करेंगे कि वे बाँस की कमाचियों एवं वॉल ट्यूब की सहायता से विविध बंद आकृतियाँ बनाइए। तब बच्चे अपने-अपने समूह में बाँस की कमाचियों एवं वॉल-ट्यूब की सहायता से बंद आकृतियाँ बनाना शुरू कर देंगे। शिक्षक बीच-बीच में बच्चों को निर्देशित भी करते रहेंगे कि वे नई आकृतियाँ बनाते समय हर बार कमाचियों की संख्या एक-एक करके बढ़ाते जाने की सोचें। हर बार दो कमाचियों को जोड़ने के लिए वॉल-ट्यूब का इस्तेमाल करेंगे। जब समूह कुछ आकृतियाँ बनाने का प्रयास कर लेंगे तब शिक्षक निम्न प्रकार की तालिका सभी समूहों को बनाने को देंगे।

क्र.स.ं.बनी आकृति का रेखाचित्र	आकृति में लगी कुल कमाचियों की संख्या	आकृति में लगी कुल वॉल-ट्यूबों की संख्या	आकृति का संभावित ज्यामितीय नाम	

समूह बारी-बारी से अपने द्वारा बनाई गई आकृतियों को प्रदर्शित करते हुए उसमें लगे कुल सामान का विवरण प्रस्तुत करेंगे। कितनी कमाचियाँ लगीं? कितने वालट्यूब लगे?

3.2.1 बहुभुज (Polygon) :

रेखाखंडों की सहायता से बनी सरल एवं बंद आकृतियाँ बहुभुज कहलाती हैं। ऊपर की गतिविधि में आपके द्वारा बनाई गई सभी बंद आकृतियाँ बहुभुज के उदाहरण हैं। आकृतियों को बनाने में जितनी कमाचियों का इस्तेमाल किया गया है उतनी ही उस बहुभुज की भुजाएँ होंगी। जितने वॉल-ट्यूब का इस्तेमाल किया गया है वो उस बहुभुज के शीर्ष हैं।

सर्व शिक्षा — 2013-14 (निःशुल्क)

यहाँ हमने देखा कि तीन कमाचियों एवं तीन वॉल-ट्यूबों से बनी बंद आकृति त्रिभुज है, इसमें तीन भुजाएँ व तीन शीर्ष हैं। इसी तरह चार कमाचियों एवं चार वॉल-ट्यूबों से बनी बंद आकृति चतुर्भुज है। बहुभुज का नामकरण हम उसकी भुजा या उसके शीर्षों की संख्या के आधार पर ही करते हैं।

आकृति का नमूना	आकृति में भुजा या शीर्षों की संख्या	आकृति का नाम

इसी प्रकार आठ भुजाओंवाले बहुभुज को अष्टभुज, नौ भुजाओंवाले बहुभुज को नवभुज तथा दस भुजाओंवाले बहुभुज को दसभुज कहेंगे। यानी n भुजाओंवाले बहुभुज को n -भुज कहेंगे। सोचिए सरल बंद आकृति में भुजा व शीर्ष की संख्या में क्या संबंध है?

3.2.2 बहुभुज का विकर्ण

नीचे बनी बहुभुज की आकृतियों को ध्यान से देखिए तथा उसमें उनके किन्हीं दो शीर्षों को जो आसन्न नहीं हों यानी ठीक बगल के नहीं हों, को स्केल की सहायता से मिलाइए। चतुर्भुज ABCD में A शीर्ष को C शीर्ष से जोड़ सकते हैं, B और D से वह पहले जुड़ा है। इसी तरह B छोर को D से जोड़ सकते हैं। यानी चतुर्भुज में ऐसी दो नई रेखाएँ खींच सकते हैं।

1

दूसरी आकृति पंचभुज है, राखी कहती है, इस आकृति में 5 नई रेखाखण्ड खींच सकते हैं और षट्भुज में 9 , क्या आप राखी से सहमत हैं? खींचकर देखिए।

बहुभुज में उसके किसी दो शीर्षों (आसन्न शीर्षों को छोड़कर) को मिलानेवाला यह रेखाखंड उस बहुभुज का विकर्ण कहलाता है।

पता कीजिए कि सप्तभुज और अष्टभुज में कितने-कितने विकर्ण खींच सकते हैं और तालिका में भरिए।
उपर बने बहुभुज में शीर्षों तथा खींचे गए विकर्णों के नाम लिखिए।
आकृति-1 शीर्ष :-
चतुर्भुज विकर्ण :-

$\begin{array}{ll}\text { आकृति-2 } & \text { शीर्ष :- } \\ \text { पंचभुज } & \text { विकर्ण :- }\end{array}$ \qquad
पंचभुज
विकर्ण :- \qquad
\qquad . ,

आकृति-3 शीर्ष :-
षट्भुज विकर्ण :-
सोचें क्या एक त्रिभुज में विकर्ण खींचे जा सकते हैं?

3.2.3 बहुभुज का अभ्यंतर एवं बहिर्भाग (Interior and exterior of a Polygon)

बगल के चित्र को ध्यान से देखिए, इसमें एक खेत और कुछ खरगोश हैं। कई खरगोश चतुर्भुजाकार खेत के अंदर तथा कई बाहर हैं।

चतुर्भुज के अंदर का भाग इसका अभ्यंतर तथा बाहर का भाग बहिर्भाग कहलाता है। इस प्रकार इस चतुर्भुजाकार खेत के बहिर्भाग में तीन तथा अभ्यंतर भाग में चार खरगोश

सर्व शिक्षा — 2013-14 (निःशुल्क)

हैं। इसी प्रकार हर बंद आकृति के अंदर का हिस्सा उसका अभ्यंतर है और बाहर का हिस्सा बहिर्भाग कहलाता है। पाँच बंद आकृतियाँ बनाकर उनके बहिर्भाग के कुछ हिस्से में हरा और अभ्यंतर में पीला रंग करें। सोचें! क्या अभ्यंतर एवं बहिर्भाग किसी बंद आकृति में ही बताना संभव है?

बहुभुज के कुछ प्रकार

उत्तल एवं अवतल बहुभुज
नीचे तीन बहुभुज दिए गए हैं, इनमें क्रम संख्या 3 पर अंकित बहुभुज अभी तक बना अन्य बहुभुजों से अलग हैं। क्या आप बता सकते हैं कि यह अलग क्यों हैं?

1

2

3

यदि ऊपर के तीनों बहुभुजों में हम विकर्ण खींचें तो तीसरे बहुभुज का एक विकर्ण जो शीर्ष A एवं B को मिलाता है बहुभुज के बाहर होगा। यह एक अवतल बहुभुज का उदाहरण है। बाकी सब बहुभुज उत्तल बहुभुज हैं। तीन ऐसे अवतल बहुभुज और बनाइए तथा इनमें उन विकर्णों को पहचानिए जो पूरे के पूरे अथवा उसका कुछ भाग बहुभुज के बाहर हो।

3.2.4 सम एवं विषम बहुभुज

जब बहुभुज में सभी भुजाएँ एवं सभी अंतःकोण समान माप के हों, तो वह सम बहुभुज कहलाता है। वर्ग एवं समबाहु त्रिभुज समबहुभुज के उदाहरण हैं। समबहुभुज में सभी भुजाएँ एवं सभी अन्तःकोण समान माप के होते हैं।

सोचिए

- क्या आयत, समकोण त्रिभुज एवं समचतुर्भुज समबहुभुज हैं?
- क्या समबाहु त्रिभुज के अतिरिक्त कोई और त्रिभुज भी समबहुभुज का उदाहरण हो सकता है? क्या कोई अवतल बहुभुज समबहुभुज हो सकता है? कारण भी सोचिए। जो बहुभुज समबहुभुज नहीं हैं वे सब विषम बहुभुज हैं।

नीचे के चित्र में बनावट के आधार पर सम एवं विषम बहुभुज की पहचान कीजिए।
\qquad
\qquad
\qquad
\qquad

3.2.5 बहुभुज के अन्तःकोणों की मापों का योग

त्रिभुज, चतुर्भुज, पंचभुज आदि बहुभुज के उदाहरण हैं।
हम जानते हैं कि त्रिभुज के तीनों अन्तःकोणों की माप 180° होती है। इसकी सहायता से हम चतुर्भुज एवं पंचभुज के अन्तःकोणों की माप ज्ञात करेंगे। इसके लिए इनके किसी एक शीर्ष से आसन्न शीर्षों को छोड़ते हुए शेष शीर्षों को मिलायेंगे तथा
 बहुभुज को त्रिभुजों में बाँटेंगे। चतुर्भुज ABCD में ABD और BCD दो त्रिभुज हैं। इनके कोणों का योग चतुर्भुज के चारों शीर्षों के अंतःकोणों का योग है। याने अंतःकोणों का योग 2 x दो समकोण है। अतः अंतःकोणों का योग 4 समकोण है। इसी तरह ABCDE में 3 त्रिभुज हैं यानी इसके अंतःकोणों का योग 6 समकोण है। फिर बहुभुज में जितने त्रिभुज बनेंगे, उस बहुभुज के अन्तःकोणों का योग 180° का उतना गुणा होगा। यानी चतुर्भुज ABCD के अन्तःकोणों का योग 4 समकोण है और पंचभुज ABCDE में यह योग 6 समकोण है।

इस प्रकार षट्भुज एवं सप्तभुज में क्रमशः 4 एवं 5 त्रिभुज बनेंगे इसलिए इनके अन्तःकोणों का योग क्रमशः 720° एवं 900° होगा। क्या आप इससे सहमत हैं? बनाकर देखिए।

आइए सोचें कि क्या हम बहुभुज के अन्तःकोणों के योग की माप को ज्ञात करने के लिए कोई पैर्टन बना सकते हैं क्या? इसके लिए अभी तक इकट्ठे किए गए आँकड़ों को तालिका में भरिए :
सर्व शिक्षा — 2013-14 (निःशुल्क)

बहुभुज का नाम	भुजाओं की संख्या	बहुभुज में बननेवाले त्रिभुजों की संख्या	अंतःकोण की माप	अन्तःकोण ज्ञात करने का पैटर्न	बहुभुज के अन्तःकोणों का योग
त्रिभुज	3	$1=(3-2)$	2 समकोण	$(3-2) \times 180^{\circ}$	180°
चतुर्भुज	4	$2=(4-2)$	4 समकोण	$(4-2) \times 180^{\circ}$	360°
पंचभुज	5	$3=(5-2)$	6 समकोण	$(5-2) \times 180^{\circ}$	540°
षट्भुज	6	$4=(6-2)$	8 समकोण	$(6-2) \times 180^{\circ}$	720°
सप्तभुज	7	$5=(7-2)$	10 समकोण	$(7-2) \times 180^{\circ}$	900°
n भुज	n	$\mathrm{n}-2$	$2(\mathrm{n}-2)$ समकोण	$(\mathrm{n}-2) \times 180^{\circ}$	$(\mathrm{n}-2) \times 180^{\circ}$

इस प्रकार बहुभुज की भुजा की संख्या ज्ञात रहने पर हम उसके सभी अन्तःकोणों की मापों का योग आसानी से ज्ञात कर सकते हैं। n भुजाओंवाले बहुभुज के अंतःकोणों की मापों का योग $2(\mathrm{n}-2)$ समकोण है।
उदाहरण-1. एक बहुभुज की भुजाओं की कुल संख्या 9 हो तो असके अन्तःकोणों की मापों का योग क्या होगा?
हल : बहुभुज की भुजाओं की संख्या $=9$
अर्थात् $\mathrm{n}=9$,
इस बहुभुज के अन्तःकोणों की माप $2(9-2)$ समकोण यानी 14 समकोण
$=14 \times 90^{\circ}=1260^{\circ}$

3.2.6 बहुभुज के बाह्य कोणों की मापों का योग

दायीं ओर बने पंचभुज के चित्र को ध्यान से देखिए इसमें ABCD एवं E से इसके बाह्य कोणों को दिखाया गया है। FGHIJ इसके पाँच अंतःकोण हैं। हमें इन बाह्य कोणों की मापों का योग ज्ञात करना है।

हमें पता है कि पंचभुज के अन्तःकोणों की माप का योग $2(5-2)$ समकोण $=6$ समकोण होता है।
कोण $\mathrm{F}+$ कोण $\mathrm{G}+$ कोण $\mathrm{H}+$ कोण $\mathrm{I}+$ कोण $\mathrm{J}=6$ समकोण

रचना से,
हम देख सकते हैं कि अन्तःकोण $\mathrm{F}+$ बाह्य कोण $\mathrm{A}=180^{\circ}$ (दोनों एक ही सरल रेखा पर के कोण हैं)
उसी प्रकार अन्तःकोण $\mathrm{G}+$ बाह्य कोण $\mathrm{B}=180^{\circ}=2$ समकोण
अन्तःकोण $\mathrm{H}+$ बाह्य कोण $\mathrm{C}=180^{\circ}=2$ समकोण
अन्तःकोण $\mathrm{I}+$ बाह्य कोण $\mathrm{D}=180^{\circ}=2$ समकोण
अन्तःकोण $\mathrm{J}+$ बाह्य कोण $\mathrm{E}=180^{\circ}=2$ समकोण
तथा अन्तः कोण $\mathrm{F}+$ बाह्य कोण $\mathrm{A}=180^{\circ}=2$ समकोण
इन सभी कोणों का योग करने पर
अन्तःकोण $\mathrm{F}+$ बाह्य कोण $\mathrm{A}+$ अन्तःकोण $\mathrm{G}+$ बाह्य कोण $\mathrm{B}+$ अन्तःकोण $\mathrm{H}+$ बाह्य कोण $\mathrm{C}+$ अन्तःकोण $\mathrm{I}+$ बाह्य कोण $\mathrm{D}+$ अन्तःकोण $\mathrm{J}+$ बोह्य कोण E
$=180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}=10$ समकोण
इस प्रकार, अन्तःकोण ($\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}+\mathrm{J}$) +बाह्य कोण ($\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
$+\mathrm{E})=900^{\circ}=10$ समकोण
अतः, बाह्य कोण $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E})=900^{\circ}$ - अन्तःकोण $(\mathrm{F}+\mathrm{G}+\mathrm{H}$ $+\mathrm{I}+\mathrm{J})$

बाह्य कोण $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E})=900^{\circ}-540^{\circ}=360^{\circ}=4$ समकोण
यानी पंचभुज के बाह्यकोणों की मापों का योग 360° है। इसी प्रकार एक त्रिभुज व चतुर्भुज को लें $\angle \mathrm{A}+\angle \mathrm{F}+\angle \mathrm{B}+\angle \mathrm{G}+\angle \mathrm{C}+\angle \mathrm{H}=6$ समकोण $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}=6$ समकोण
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+2$ समकोण $=6$ समकोण
अतः $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=4$ समकोण

$\angle \mathrm{A}+\angle \mathrm{F}+\angle \mathrm{B}+\angle \mathrm{G}+\angle \mathrm{C}+\angle \mathrm{H}+\angle \mathrm{D}+\angle \mathrm{I}=8$ समकोण या $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}+\angle \mathrm{I}=8$ समकोण $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=4$ समकोण क्योंकि
$\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}+\angle \mathrm{I}=4$ समकोण

सर्व शिक्षा — 2013-14 (निःशुल्क)

इन बहुभुजों के सभी बाह्य कोणों का जोड़ 4 समकोण है। वास्तव में सभी वाह्य कोणों को मिलाकर एक बिन्दु के गिर्द एक पूरा चक्कर लग जाता है, तभी बहुभुज के बाह्य कोणों का योग 4 समकोण ही आता है। यानी एक बंद आकृति का पूरा चक्कर उसके बाह्य कोणों का जोड़ होता है, अतः कितनी भी भुजाएँ हों बाह्य कोण का योग 4 समकोण ही होगा।

उसी प्रकार किसी बहुभुज के सभी बाह्य कोणों की मापों का योग ज्ञात करने हेतु हमें उस बहुभुज का पूरा एक चक्कर लगाना पड़ता है। किसी भी उत्तल बंद आकृति का पूरा चक्कर लगा कर हम 360° का कोण बनाते हैं।

समबहुभुज के सभी बाह्य कोण भी समान माप के होते हैं। क्या आप सहमत हैं?
आइए बाह्य कोणों की मापों के योग पर आधारित कुछ प्रश्नों को हल करें :
उदाहरण-2 एक पंचभुज के पाँच बाह्य कोणों में से चार कोण क्रमशः $75^{\circ}, 55^{\circ}, 80^{\circ}$ एवं 60° हैं उसका पाँचवा बाह्य कोण ज्ञात कीजिए।
हल : पंचभुज के बाह्य कोणों की मापों का योग 360° होता है।
पंचभुज के चार कोण क्रमशः $75^{\circ}, 55^{\circ}, 80^{\circ}$ एवं 60° हैं।
इसलिए पाँचवाँ कोण $=360^{\circ}-\left(75^{\circ}+55^{\circ}+80^{\circ}+60^{\circ}\right)$
$=360^{\circ}-270^{\circ}$
$=90^{\circ}$
उदाहरण-3 एक समबहुभुज का एक बाह्य कोण 60° है, तो उस बहुभुज की कितनी भुजाएँ हैं?
हल : बहुभुज के बाहय कोणों की मापों का योग 360° होता है। चूँकि समबहुभुज का प्रत्येक बाह्य कोण समान माप का होता है।

इसलिए भुजाओं की संख्या $=\frac{360}{60}=6$
अभीष्ट बहुभुज एक षट्भुज है।

प्रश्नावली 3.1

1. सरल एवं बंद आकृति क्या होती हैं? उदाहरण देते हुए उनके प्रमुख गुणों को समझाइए।
2. निम्न आकृतियों में से पहचान करें की कौन-सी सरल हैं, कौन सी बंद हैं व सरल हैं, कौन सी खुली हैं, कौन-सी उत्तल एवं कौन-सी अवतल आकृति हैं?

3. नीचे दिए गए बहुभुज का नाम लिखिए तथा उसके सभी संभावित विकर्ण खींचिए :

विकर्णों की संख्या कितनी है?
4. नीचे के चित्र में कुछ कारें खड़ी हैं। बीच में चौकोर आकार का मैदान है। बताइए कि कितनी कार बहुभुज मैदान के अभ्यंतर भाग में हैं? कितनी बहिर्भाग में हैं?

5. नीचे के दो कॉलम में से एक में बहुभुज का नाम तथा दूसरे में उसके अंतः कोणों के भुजाओं की मापों का योग दिया गया है। बहुभुज के नाम को उनके अंतः कोणों के मापों के योग से मिलान कीजिए।

त्रिभुज	पंचभुज	सप्तभुज	नवभुज	षट्भुज
900°	1260°	180°	720°	540°

सर्व शिक्षा — 2013-14 (निःशुल्क)
6. एक बहुभुज के अन्तःकोणों के मापों का योग 540° है उसमें कितनी भुजाएँ हैं? बताइए।
7. एक समबहुभुज की आठ भुजाएँ हैं,उसके प्रत्येक बाह्यकोणों की माप ज्ञात कीजिए। प्रत्येक अंतःकोण कितने माप का होगा?

3.3.1 चतुर्भुज (Quadrilateral)

आइए नीचे बने खानों में विभिन्न आकार के चार भुजावाले उत्तल बहुभुज बनाएँ।

ऊपर के खानों में बनाई गई बहुभुज आकृतियों को ध्यान से देखिए, उनमें क्या समानताएँ हैं?

- ये सभी आकृतियाँ चार भुजाओं से बनी हैं।
- इन सभी आकृतियों में चार शीर्ष हैं।
- इन सभी आकृतियों में चार कोण हैं।

स्वयं करक देखिए

1. चतुर्भुज के और क्या-क्या गुण आप बता सकते हैं?
(जैसे बाह्य कोणों के माप का जोड़ \qquad
2. एक चतुर्भुज का दूसरा, तीसरा तथा चौथा अन्तःकोण, पहले अन्तःकोण का क्रमशः दोगुना, तिगुना तथा चौगुना है तो चारों अन्तःकोणों की माप बताइए।
संकेत
माना कि चतुर्भुज का पहला कोण x है, तब दूसरा कोण $=2 x$
तीसरा कोण $=3 x$
तथा चौथा कोण $=4 x$
3. ऐसे 3 और सवाल बनाइए और दोस्तों को हल करने को दीजिए।

3.4 चतुर्भुज के प्रकार (Kind of Quadrilateral)

नीचे दिए चतुर्भुजों को देखिए। ये सब अलग-अलग प्रकार के हैं।

सामान्य चतुर्भुज के गुणों के अलावा इन सबमें कुछ अतिरिक्त गुण हैं।

3.4.1 समलंब (Trapezium)

आकृति 1 में सम्मुख भुजाओं के दो युग्मों से एक युग्म समान्तर है। ऐसा चतुर्भुज समलंब चतुर्भुज कहलाता है। चित्र 1 में समांतर सम्मुख भुजाओं को तीर से दिखाया गया है। नीचे बने चित्रों में पहचान कीजिए कि, कौन समलंब चतुर्भुज है और कौन नहीं? जो चतुर्भुज समलंब है उसके समांतर सम्मुख भुजाओं के युग्म को तीर के निशान से दिखाइए।

कुछ करें

1. आप अपने तथा अपने मित्रों के ज्यामितीय बक्से से चार सेटस्क्वेयर लीजिए तथा इनके उपयोग से विभिन्न तरह के समलंब प्राप्त कीजिए तथा उसकी आकृति अपने नोटबुक में अंकित कीजिए।
2. एक ऐसी समलंब की आकृति बनाइए जिसमें उसके दोनों असमान्तर भुजाएँ समान लम्बाई की हों। आपके द्वारा बनाई गई यह आकृति समद्विबाहु समलंब कहलायेगा।
सर्व शिक्षा - 2013-14 (निःशुल्क)

3.4.2 पतंग (Kite)

बसंत ऋतु में आपने लोगों को आसमान में पंतग उड़ाते हुए देखा होगा। हालाँकि दिखने में ये पतंगें अलग-अलग होती हैं किन्तु इनमें से अधिकांश एक निश्चित आकृति की होती हैं। पतंग की आकृति भी एक विशेष प्रकार का चतुर्भुज होती है। आइए इसके कुछ गुणों को देखें।

- चतुर्भुज के समान गुणों के अलावा इसमें आसन्न भुजाओं के दो ऐसे युग्म (जोड़े) होते हैं जिनमें शामिल दोनों रेखाओं की लम्बाई समान होती हैं। बगल में बने पतंग ABCD को घ्यान से देखिए यहाँ आसन्न भुजाओं का पहला युग्म $\mathrm{AD}=\mathrm{AB}$ तथा दूसरा
 युग्म $\mathrm{BC}=\mathrm{DC}$
- पतंग के दोनों विकर्ण AC तथा BD एक दूसरे को समकोण पर समद्विभाजित करते हैं।
- पतंग का एक विकर्ण उस पर बने दोनों कोणों का समद्विभाजक भी है।
- पतंग का एक विकर्ण सममिति अक्ष भी है अर्थात् पतंग एक सममित आकृति होती है। दी गई आकृति में सममित अक्ष कौन-सा है? कारण भी बताइए।
- पतंग में सम्मुख कोणों के दो युग्मों में एक बराबर होते हैं। दी गई आकृति में कौन-सा युग्म बराबर है?

कुछ करें

1. आइए नीचे बनी आकृतियों में पहचानिए कि कौन-कौन पतंग हैं?

इनमें आसन्न भुजाओं के इनके शीर्षों का नाम लिखते हुए युग्म व बराबर कोणों का युग्म भी पहचानिए व सममित अक्ष खींचिए।
2. क्या कोई समलम्ब चतुर्भुज पतंग भी हो सकता है? कारण सहित समझाइए।
3. एक पंतग की दो असमान आसन्न भुजाएँ क्रमशः 7 सेमी और 5 सेमी हैं, उसकी परिमिति क्या होगी ?

3.4.3 समांतर चतुर्भुज (Parallelogram)

बगल के चित्र को ध्यान से देखिए। इसमें चतुर्भुज के आमने-सामने की भुजाएँ यानी सम्मुख भुजाओं के दोनों जोड़े समांतर है। ऐसा चतुर्भुज समांतर चतुर्भुज कहलाता है।

- ABCD एक समांतर चतुर्भुज है।
- यहाँ सम्मुख भुजा का एक युग्म AB और CD तथा दूसरा युग्म AD और BC आपस में समांतर हैं।
- समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं। कोण $\mathrm{A}=$ कोण C तथा कोण D $=$ कोण B , क्या आप समान्तर रेखाएँ व उन पर खींची गई तिर्यक् रेखा के आधार पर इसे दिखा सकते हैं?
- समांतर चतुर्भुज में आमने सामने की भुजाएँ समान होती हैं, अर्थात् $\mathrm{AB}=\mathrm{CD}$, क्या आप इसे त्रिभुज की सर्वांगसमता उपयोग करके दिखा सकते हैं?
- समांतर चतुर्भुज में आसन्न कोण संपूरक होते है अर्थात् कोण $\mathrm{A}+$ कोण $\mathrm{B}=180^{\circ}$, कोण $\mathrm{B}+$ कोण $\mathrm{C}=180^{\circ}$
कोण $\mathrm{C}+$ कोण $\mathrm{D}=180^{\circ}$ एवं कोण $\mathrm{D}+$ कोण $\mathrm{A}=180^{\circ}$
क्या आप इसे साबित कर सकते हैं?
- समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं। आपस में और शिक्षक से चर्चा कर यह सब दिखाने का प्रयास कीजिए।

उदाहरण-4. एक समांतर चतुर्भुज का एक कोण 110° हो तो उसके शेष कोणों की माप ज्ञात कीजिए।
हल : हम जानते हैं कि समांतर चतुर्भुज में आसन्न कोण संपूरक होते हैं।
प्रश्नानुसार, पहला आसन्न कोण 110° है
तब दूसरा आसन्न कोण $=180^{\circ}-110^{\circ}=70^{\circ}$
पुनः हम यह भी जानते हैं कि समांतर चतुर्भुज में सम्मुख कोण भी बराबर होते हैं।
अतः समांतर चतुर्भुज का तीसरा एवं चौथा कोण क्रमशः 110° एवं 70° होगा। इस प्रकार समांतर चतुर्भुज के चारो कोण क्रमशः $110^{\circ}, 70^{\circ}, 110^{\circ}$ एवं 70° होगा।
सर्व शिक्षा — 2013-14 (निःशुल्क)

उदाहरण-5. एक समांतर चतुर्भुज की दो आसन्न भुजाएँ क्रमशः 8 सेमी एवं 6 सेमी हैं। उसकी परिमिति क्या होगी ?
हल : हम जानते हैं कि समांतर चतुर्भुज में आमने-सामने की भुजाएँ समान लम्बाई की होती हैं।

अतः दो आसन्न भुजाएँ यदि 8 सेमी एवं 6 सेमी हों तो समांतर चतुर्भुज की शेष दोनों भुजाएँ क्रमशः 8 सेमी एवं 6 सेमी होंगी।
इसलिए समांतर चतुर्भुज की परिमिति $=8$ सेमी +6 सेमी +8 सेमी +6 सेमी $=28$ सेमी।

3.4.4 समचतुर्भुज (Rhombus)

ऐसा चतुर्भुज जिसकी सभी भुजाएँ समान लम्बाई की हों, वह समचतुर्भुज कहलाता है।

- ABCD एक समचतुर्भुज है।
- समचतुर्भुज के सम्मुख कोण भी बराबर होते हैं। अर्थात् कोण $\mathrm{A}=$ कोण C तथा कोण $\mathrm{D}=$ कोण B , सोचिए कैसे ?
- इसमें सम्मुख भुजा का एक युग्म AB और CD तथा दूसरा युग्म AD और BC आपस में समांतर होगा। कैसे?
- त्रिभुजों की सर्वांगसमता के आधार पर बताइए कि समचतुर्भुज में आसन्न कोण संपूरक होते हैं? अर्थात् कोण $\mathrm{A}+$ कोण
 $B=180^{\circ}$, कोण $B+$ कोण $C=180^{\circ}$ कोण $\mathrm{C}+$ कोण $\mathrm{D}=180^{\circ}$ एवं कोण $\mathrm{D}+$ कोण $\mathrm{A}=180^{\circ}$
- समचतुर्भुज के विकर्ण एक दूसरे को समकोण पर समद्विभाजित करते हैं।

उदाहरण-6 बगल की आकृति में ABCD एक समचतुर्भुज है। इसका एक विकर्ण 10 सेमी तथा एक भुजा 13 सेमी हैं तो उसका दूसरा विकर्ण क्या होगा?
हल :
हम जानते हैं कि समचतुर्भुज के विकर्ण एक दूसरे को समकोण पर समद्विभाजित करते हैं तथा समचतुर्भज को चार बराबर समकोण त्रिभुजों में
 बाँटते हैं। यदि हम एक समकोण त्रिभुज को लें तो उसका विकर्ण 13 सेमी तथा समकोण बनानेवाली दो भुजाओं में से एक भुजा 5 सेमी लम्बाई की होगी। इस

प्रकार समकोण बनानेवाली दूसरी भुजा की लम्बाई $=12$ सेमी (सोचिए कैसे?) इस प्रकार दूसरा विकर्ण $2 \times 12=24$ सेमी होगा।

3.4.5 आयत (Rectangle)

ऐसा चतुर्भुज जिसकी सम्मुख भुजाएँ बराबर हों तथा प्रत्येक अन्तःकोण समकोण हो, आयत कहलाता है।

- ABCD एक आयत है।
- आयत की सम्मुख भुजाएँ समान होती हैं अर्थात् AB
 $=\mathrm{CD}$ तथा $\mathrm{BC}=\mathrm{DA}$
- आयत का प्रत्येक कोण समकोण होता है। अर्थात् कोण $\mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=$ 90°
- आयत के विकर्ण समान लम्बाई के होते हैं। $\mathrm{AC}=\mathrm{BD}$
- आयत के विकर्ण एक दूसरे को समद्विभाजित करते हैं।

कुछ करें

1. एक आयत की लम्बाई 4 सेमी तथा चौड़ाई 3 सेमी है, उसके दोनों विकर्ण की लम्बाई ज्ञात कीजिए।
2. बताइए एक समांतर चतुर्भुज कब आयत होगा ?

3.4.6 वर्ग (Square)

ऐसा चतुर्भुज जिसकी चारों भुजाएँ बराबर हों तथा प्रत्येक अन्तःकोण समकोण हो, वर्ग कहलाता है।

- ABCD एक वर्ग है।

- वर्ग की चारों भुजाऍ समान होती है अर्थात् $\mathrm{AB}=\mathrm{CD}=\mathrm{BC}=\mathrm{DA}$

- वर्ग के विकर्ण समान लम्बाई के होते हैं। $\mathrm{AC}=\mathrm{BD}$
- वर्ग के विकर्ण एक दूसरे को समकोण पर समद्विभाजित करते हैं।
सर्व शिक्षा — 2013-14 (निःशुल्क)

कुछ करें

सोंचिए और बताइए

1. क्या सभी वर्ग एक आयत है, यदि हाँ तो कैसे?
2. क्या सभी वर्ग एक समचतुर्भुज है, यदि हाँ तो कैसे?
3. क्या सभी वर्ग एक समांतर चतुर्भुज है, यदि हाँ तो कैसे?

प्रश्नावली 3.2

1. समलंब ABCD में कोण $\mathrm{A}=100^{\circ}$ तथा कोण B $=110^{\circ}$ हैं तब शेष दोनों दोनों कोणों की माप क्या होगी?

2. एक समांतर चतुर्भुज की आसन्न भुजाएँ $3: 2$ के अनुपात में हैं यदि पहली आसन्न भुजा 6 सेमी हो तब उस समांतर चतुर्भुज की परिमिति क्या होगी ?
3. समांतर चतुर्भुज का एक कोण 120° है, तो उसके बाकी तीनों कोणों की माप काया होगी?
4. एक समचर्तुभुज के विकर्णों की लम्बाई 6 मीटर एवं 8 मीटर है तो उसके प्रत्येक भुजा की लम्बाई ज्ञात कीजिए।
5. एक आयत और समांतर चतुर्भुज में क्या समानता और क्या अंतर हैं? लिखिए।

