
अध्याय - 10

रासायनिक आबंधन एवं अभिक्रियायें

हम पढ़ेंगे

10.1 रासायनिक आबंधन

10.2 वैद्युत संयोजी बंध

10.3 सहसंयोजी बंध

10.4 ध्रुवीय सहसंयोजी बंध

10.5 रासायनिक अभिक्रिया

10.6 साधारण रासायनिक अभिक्रियाएँ

10.7 योगात्मक अभिक्रिया

10.8 अपघटन अभिक्रिया

10.9 प्रतिस्थापन अभिक्रिया

10.10 आक्सीकरण एवं अपचयन अभिकिया

10.1 रासायनिक आवंधन

जब दो या दो से अधिक तत्वों के परमाणु आपस में रासायनिक क्रिया करते हैं तो यौगिक का अणु बनाते हैं। परमाणुओं के मध्य जो आकर्षण बल होता है उसे ही रासायनिक आबंधन कहते हैं।

प्रत्येक परमाणु के किसी अन्य परमाणु से संयोग करने की प्रवृत्ति उसके बाह्यतम कोश के इलेक्ट्रॉनों की संख्या विशेषतया संयोजी इलेक्ट्रॉन पर निर्भर करती है।

प्रत्येक परमाणु संयोजन के अंतर्गत स्थायी अवस्था या पूर्ण अष्टक प्राप्त करता है, अष्टक का अर्थ 8 इलेक्ट्रॉन से है।

आवर्त सारिणी में शून्य वर्ग (समूह 18) की गैसों के इलेक्ट्रॉनिक विन्यास को देखने से पता चलता है कि हीलियम के बाह्यकोश में दो व अन्य अक्रिय गैसों के बाहरी कोश में आठ इलेक्ट्रॉन ही हैं। अर्थात अष्टकपूर्ण है। यही कारण है कि ये गैसें किसी अन्य परमाणु से रासायनिक क्रिया नहीं करती है।

तालिका - 10.1

अक्रिय गैसें (समूह 18)	परमाणु क्रमांक	इलेक्ट्रॉनिक विन्यास
He हीलियम	2	2
Ne निऑन	10	2, 8
Ar ऑर्गन	18	2, 8, 8
Kr क्रिप्टॉन	36	2, 8, 18, 8
Xe जीनान	54	2, 8, 18, 18, 8
Rn रेडॉन	86	2, 8, 18, 32, 18, 8

अक्रिय गैसों को आदर्श गैसे भी कहते हैं। ये एक परमाण्विक होती है। (अर्थात् किसी अन्य परमाणु से सामान्यत: संयोग नहीं करती है। अक्रिय गैसों को छोडकर शेष अन्य तत्वों के परमाणु अपने बाह्यतम कोश में आठ (बाहरी

- (अध्याय 10 : P-141) -

कोश पहला है तो दो) इलेक्ट्रॉन पूरा करने की कोशिश करते हैं। प्रत्येक तत्व या परमाणु स्थायी अवस्था प्राप्त करने के लिये अपने बाहरी कोश में निकटतम अक्रिय गैस के समान इलेक्ट्रॉनिक विन्यास प्राप्त करने की कोशिश करता है।

सामान्यत: परमाणु निम्न दो प्रकार से अक्रिय गैस के समान इलेक्ट्रॉनिक संरचना प्राप्त करके अष्टक पूर्ण करते हैं।

- (1) किसी अन्य परमाणु को इलेक्ट्रॉन देकर या इलेक्ट्रॉन लेकर।
- (2) किसी अन्य परमाणु के साथ इलेक्ट्रॉनों की साझेदारी करके। आबंधन के प्रकार- उपरोक्त चर्चा के आधार पर आबंध दो प्रकार के होते हैं।
- (i) वैद्युत संयोजी बंध।
- (ii) सह संयोजी बंध।

10.2 वैद्युत संयोजी बंध

(i) वैद्युत संयोजी बंध- जब कोई दो परमाणु इस प्रकार संयोग करते हैं कि उनमें से परमाणु की बाह्य कक्षा से इलेक्ट्रॉन दूसरे परमाणु की बाह्यतम कक्षा में चले जायें तो इलेक्ट्रॉन के स्थानान्तरण से एक परमाणु जो इलेक्ट्रॉन देता है धनावेश (+ve) युक्त हो जाता है और दूसरा जो इलेक्ट्रॉन ग्रहण करता है, ऋणावेश (-ve) युक्त हो जाता है। विपरीत आवेश के कारण दोनों परमाणु परस्पर स्थित विद्युत बल रेखाओं द्वारा बंधे होते है, इस बंध को (Electrovalent bond) या आयिनक बंध (Ionic bond) कहते हैं क्योंकि ये आबंध के आयनों के मध्य होता है तथा बने हुये यौगिक को वैद्युत संयोजी यौगिक (Electrovalent Compound) या ध्रुवीय यौगिक (Polar Compound) कहा जाता है।

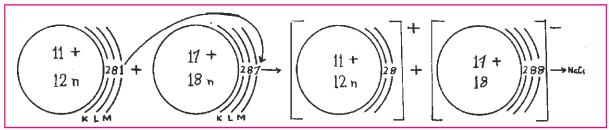
यह समझने के लिये सोडियम क्लोराइड (NaCl) के बनने के प्रक्रम को देखें-

1. सर्वप्रथम Na (सोडियम परमाणु) जिसका इलेक्ट्रॉनिक विन्यास 2, 8, 1 है। सोडियम बाह्यतम (तीसरे) कोश का एक इलेक्ट्रॉन त्यागकरNa+ (सोडियम धनायन) बनाता है। इलेक्ट्रॉन त्यागने में लगी ऊर्जा का मान 496 किलो जूल प्रतिमोल (KJmol-1) होता है। इसे आयनन ऊर्जा (Ionisation Energy) कहते हैं।

इस प्रकार सोडियम परमाणु (2, 8, 1) प्राप्त धन आवेश वाली रासायिनक स्पीशीज को धनायन (Cation) सोडियम धनायन (2, 8) सोडियम आयन (Na^+) कहते हैं। क्लोरीन परमाणु सोडियम के द्वारा दिये गये एक इलेक्ट्रॉन को ग्रहण करके क्लोराइड ऋणायन (Cl^-) बनाता है। क्लोरीन का इलेक्ट्रॉनक विन्यास 2, 8, 7 है। इलेक्ट्रॉन ग्रहण करने में इलेक्ट्रॉन बंधुता के बराबर 349 KJmol^{-1} ऊर्जा मुक्त होती है। इस प्रक्रिया द्वारा प्रदत्त ऋणात्मक स्पीशीज को ऋणायन (Anion) अथवा क्लोराइड आयन (Cl^-) कहते हैं।

$$Cl$$
 $+e^ Cl$
 $+$ इलेक्ट्रान

 $(2, 8, 7)$
 $(2, 8, 8)$


उपरोक्त दोनों आयनों पर विपरीत आवेश होने के कारण उनके मध्य स्थिर विद्युत आकर्षण बल उत्पन्न होता है।

🗕 (अध्याय 10 : P-142) 💳

अत: सोडियम धनायन व क्लोराइड ऋणायन स्थिर विद्युत आकर्षण बल से जुड़कर सोडियम क्लोराइड (NaCl) यौगिक बनाते हैं।

Na
$$^+$$
 + Cl $^-$ — NaCl सोडियम धनायन क्लोराइड ऋणायन सोडियम क्लोराइड यौगिक

अर्थात् दो परमाणुओं के बीच इलेक्ट्रॉनों के स्थानांतरण से बनने वाले विपरीत आवेशी आयन स्थिर विद्युत आकर्षण बल से जुड़कर वैद्युत संयोजी यौगिक बनाते हैं।

सोडियम क्लोराइड अणु

NaCl (सोडियम क्लोराइड) के समान ही अन्य उदाहरण जैसे KCl (पोटेशियम क्लोराइड), LiCl (लीथियम क्लोराइड), $MgCl_2$ (मैग्नीशियम क्लोराइड), $AlCl_3$ (ऐल्यूमीनियम क्लोराइड), MgO (मैग्नीशियम ऑक्साइड) आदि के निर्माण को भी निम्न प्रकार समझा जा सकता है।

Mg + 2Cl
$$\longrightarrow$$
 Mg++ + 2Cl \longrightarrow MgCl₂ मैग्नीशियम परमाणु * दो क्लोरीन परमाणु मैग्नीशियम धनायन क्लोराइड ऋणायन मैग्नीशियम क्लोराइड 2, 8, 2 2 (2, 8, 7) 2, 8 2, (2, 8, 8) (* मैग्नीशियम बाहरी कोश के दो इलेक्ट्रॉनों में से एक-एक अलग-अलग दो क्लोरीन परमाणुओं द्वारा ग्रहण किया

3CI ------ + Al 3Cl⁻ — AlCl₂ एल्यूमीनियम परमाणु क्लोराइड परमाणु एल्युमीनियम धनायन क्लोराइड ऋणायन एल्यूमीनियम क्लोराइड $3(2, 8, 7) \longrightarrow 2, 8$

जाता है)।

एल्युमिनीयम के बाहरी कोश के तीन इलेक्ट्रान तीन अलग-अलग क्लोरीन परमाणुओं को (एक-एक) दिये जाते है

Mg + O
$$\longrightarrow$$
 Mg⁺⁺ + O⁻⁻ \longrightarrow MgO
2, 8, 2 2,6 2, 8 2,8

मैग्नीशियम परमाणु आक्सीजन परमाणु मैग्नीशियम धनायन आक्साइड ऋणायन मैग्नीशियम ऑक्साइड

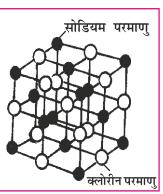
3 (2, 8, 8)

इस प्रकार ऐसे यौगिक जिनमें वैद्युत संयोजी आंवध होते है उन्हें वैद्युत संयोजी यौगिक कहते है-ऐसे यौगिक आवर्त सारिणी के समूह 1 की क्षार धातुएँ एक इलेक्ट्रान देकर धनायन बनाती है। समूह 2 की क्षारीयमृदा धातुऐं दो इलेक्ट्रान देकर तथा समूह 13 के तत्वों के परमाणु तीन इलेक्ट्रान त्यागकर धनायन बनाते है। इनका आयनन विभव बहुत कम होता है।

आवर्त सारिणी के समूह 16 व 17 के तत्वों की इलेक्ट्रान बंधुता बहुत उच्च होती है। अत: ये तत्व इलेक्ट्रान ग्रहण करके ऋणायन बनाते है।

कम आयनन विभव और उच्च इलेक्ट्रान बंधुता वाले तत्वों के परमाणु आपस में संयोग करके वैद्युत संयोजी यौगिक (आयनिक यौगिक) बनाते है। उच्च धन विद्युतीय एवं उच्च ऋण विद्युतीय परमाणुओं के मध्य वैद्युत संयोजी बंध बनता है।

क्रियाकारी परमाणुओं की ऊर्जा सदैव उच्च होती है इसीलिये ये अस्थायी होते है। आपस में बंध बनाने (रासायनिक संयोग) के बाद बने यौगिक स्थायी होते है। स्थायी अवस्था में इनकी ऊर्जा न्यूनतम होती है।

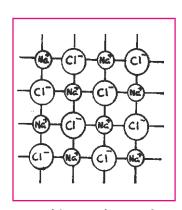

10.2.1वैद्युत संयोजी यौगिकों के गुण

1. क्रिस्टलीय संरचना

आयनिक यौगिकों में ठोस अवस्था में धनायनों व ऋणायनों की एक बहुत ही सुगठित व्यवस्था होती है जिसे क्रिस्टल कहते है। जिसने प्रत्येक धनायन को निश्चित संख्या में ऋणायन घेरे रहते हैं। व ऋणायन को निश्चित संख्या में धनायन घेरे रहते हैं।

2. भौतिक प्रकृति

प्राय: आयिनक यौगिक कठोर होते हैं। आयिनक आवेश बढ़ने और आयनों के बीच की दूरी घटने पर उनकी कठोरता बढ़ती है। बाहर से बल लगाने से क्रिस्टल विकृत (deformed) होने लगता है जिससे आयन अपने स्थान से खिसकने लगते हैं और समान आवेश वाले आयन एक-दूसरे के निकट आने लगते हैं। इस प्रकार उत्पन्न प्रतिकर्षण के कारण ही आयिनक यौगिक भंगुर (brittle) होते हैं।


सोडियम क्लोराइड की क्रिस्टलीय रचना

3. विलेयता

आयनिक यौगिक ध्रुवीय विलायकों (जैसे पानी) में घुल जाते हैं, क्योंकि ध्रुवीय विलायक के धन सिरे से आयनिक यौगिक का ऋणायन व ऋण सिरे से धनायन जुड़ जाता है। फलस्वरूप यौगिक घुल जाता है। आयनिक यौगिक अध्रुवीय विलायक जैसे- ऐल्कोहल, ईथर, बेंजीन में नहीं घुलते हैं।

4. गलनांक एवं क्वथनांक

विद्युत संयोजी यौगिकों के गलनांक व क्वथनांक बहुत उच्च होते हैं। क्योंकि इनके विपरीत आवेशित आयनों के मध्य प्रबल स्थिर वैद्युत आकर्षण बल होने के कारण इस बंध को तोड़ने में बहुत अधिक ऊर्जा लगती है।

सोडियम क्लोराइड की आयनिक रचना

• (अध्याय 10 : P-**144**) •

5. वैद्युत चालकता

आयनिक यौगिक विद्युत के सुचालक होते है। पिघली हुई अवस्था या जलीय विलयन में आयनिक यौगिक (वैद्युत संयोजी यौगिक) विद्युत के सुचालक होते है क्योंकि पिघली अवस्था या जलीय विलयन में आयनों का मुक्त संचालन होता है। इसलिए इन अवस्थाओं में विद्युत संयोजी यौगिक विद्युत के सुचालक होते है।

	तालिका 10.2 कु	छ वैद्युत संयोजी यौगिक (अ	ायनिक यौगिक)
नाम		सत्र	lons

क्र.	नाम	सूत्र	lons present
1.	पोटेशियम क्लोराइड	KCI	K⁺ और CI⁻
2.	अमोनियम क्लोराइड	NH ₄ CI	NH⁺₄+ और Cl⁻
3.	कैल्शियम क्लोराइड	CaCl ₂	Ca ²⁺ और CI ⁻
4.	मैग्नीशियम ऑक्साइड	MgO	Mg ²⁺ और O ²⁻
5.	एल्यूमीनियम ऑक्साइड	Al_2O_3	AI ³⁺ और O ²⁻
6.	सोडियम हाइड्राक्साइड	NaOH	Na⁺ और OH⁻
7.	कॉपर सल्फेट	CuSO ₄	Cu²+ और SO₄²−

हम जानते हैं कि रासायनिक यौगिक बनने के पहले वर्णित की गयी प्रक्रिया में इलेक्ट्रानों के आदान प्रदान होने से वैद्युत संयोजी बंध बनता है पर परमाणुओं के पास जब बाहरी कोश में इलेक्ट्रानों की संख्या 4 या उससे अधिक होती है, तो इलेक्ट्रान देना या लेना न करते हुए परमाणुओं के बीच इलेक्ट्रानों का आपस में साझा, होता है। अर्थात साझे के इलेक्ट्रानों पर दोनों परमाणुओं का समान अधिकार होता है। इलेक्ट्रानों का साझा भी दो प्रकार से होता है। (1) दोनों परमाणु के इलेक्ट्रानों का बराबरी का साझा, इस तरह से बने बन्ध सह संयोजी आबंध कहलाते हैं (2) दोनों इलेक्ट्रानों में किसी एक परमाणु के इलेक्ट्रानों का एक तरफा साझा इस तरह से बने बंध उप संयोजी बन्ध कहलाते हैं।

10.3 सहसंयोजी बंध – जब दो परमाणुओं के मध्य इलेक्ट्रॉनों की बराबर की साझेदारी होती है तो इस प्रकार बने बंध को सहसंयोजी बंध कहते हैं तथा ऐसे यौगिक जिनमें यह बंध होता है सह-संयोजी यौगिक कहलाते हैं।

इन यौगिकों के अणुओं में आयन नहीं होते हैं। उदाहरणार्थ- हाइड्रोजन, क्लोरीन, जल तथा अन्य कार्बनिक यौगिक आदि। इन यौगिक के अणुओं में प्रत्येक परमाणु का इलेक्ट्रॉनिक विन्यास निकटतम उत्कृष्ट गैस के इलेक्ट्रानिक विन्यास जैसा होता है। यह आबन्ध एक या एक से अधिक संयोजकता इलेक्ट्रॉन की साझेदारी द्वारा बनता है।

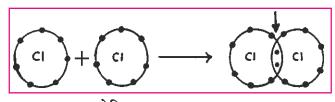
अधातु तत्वों में सामान्यत: 5, 6 व 7 इलेक्ट्रॉन होते हैं। (C व H को छोडकर क्योंकि C के बाह्य कक्ष में 4 व H में 1 इलेक्ट्रॉन होता है।) यह दोनों आपस में साझेदारी से सह संयोजक बन्ध बनाते हैं। सह संयोजक बंध तीन प्रकार के होते है:-

(i) एकल सह-संयोजक बंध।

- (ii) द्वि-सह-संयोजक बन्ध।
- (iii) त्रि- सह-संयोजक बन्ध।

(i) एकल सह-संयोजक बंध (Sigle Covalent bond) एकल सह संयोजक बन्ध दो परमाणुओं के मध्य एक-एक इलेक्ट्रान की साझेदारी से बनता है इस प्रकार एक युग्म (One pair) इलेक्ट्रॉन का दोनों परमाणुओं के मध्य बनता है। उदाहरणार्थ-

H, हाइड्रोजन अणु का बनना -

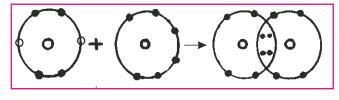

हाइड्रोजन परमाणु के बाहरी कोश में एक इलेक्ट्रॉन होता है। वह किसी अन्य हाइड्रोजन परमाणु से एक इलेक्ट्रॉन की साझेदारी करता है अर्थात एक-एक इलेक्ट्रॉन की साझेदारी होती है। अब दोनों

हाइड्रोजन अणु का बनना- (H-H)

हाइड्रोजन परमाणुओं के अधिकार में दो-दो इलेक्ट्रान हो जाते

हैं। इस तरह He उत्कृष्ट गैस का इलेक्ट्रॉनिक विन्यास प्राप्त कर लेते हैं। हाइड्रोजन परमाणुओं के बीच एकल बंध (Single Bond) बन जाता है। दो परमाणुओं के बीच एकल बंध को रेखा द्वारा दर्शाया जाता है

क्लोरीन अणु का बनना - क्लोरीन परमाणु के बाहरी कोश में सात इलेक्ट्रान होते है। क्योंकि इसका इलेक्ट्रानिक विन्यास 2,8,7 है। क्लोरीन अणु बनने में, इसके परमाणु अपनी संयोजकता कोशों के एक-एक इलेक्ट्रानों के परस्पर सहभाजन (Shairing) से


क्लोरिन अणु का बनना- (CI-CI)

अपने-अपने अष्टक पूर्ण करते हैं। सहभाजन से उत्पन्न यह

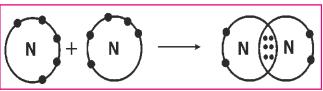
इलेक्ट्रॉन युग्म दोनों क्लोरीन परमाणुओं के नाभिकों के ठीक मध्य में स्थित होता है। इस साझेदारी से विरचित आबंध को सह-संयोजक बंध कहते है। चूँिक यह एक-एक इलेक्ट्रॉन की साझेदारी से निर्मित है अत: इसे एकल-सह संयोजी बंध (Single Covalent Bond) कहते हैं। इसे चिन्ह(-)से प्रदर्शित करते हैं।

(ii) द्वि सह-संयोजक बंध (Double Covalent bond)

जब दो परमाणुओं के मध्य आपस में दो-दो इलेक्ट्रॉनों की साझेदारी होती है, (जिससे दोनों परमाणुओं का इलेक्ट्रानिक विन्यास उत्कृष्ट गैस के समान हो जाता है) तो इस प्रकार दो युग्म इलेक्ट्रॉनों का निर्माण

होता है जिन पर दोनों परमाणुओं का समान अधिकार होता है। इसे(=)चिन्ह से प्रदर्शित करते है।

ऑक्सीजन अणु का बनना- (O=O)

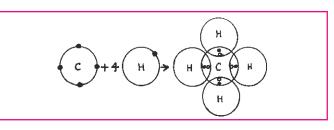

दो जोड़ी इलेक्ट्रॉनों की साझेदारी होने के कारण ऑक्सीजन व ऑक्सीजन के मध्य द्विबंध (Double bond) बनता है।

• (अध्याय 10 : P-146) **-**

(iii) त्रि सह-संयोजक बंध (Triple Covalent bond)

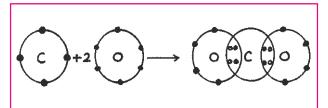
दो परमाणुओं के मध्य तीन-तीन इलेक्ट्रॉन की साझेदारी से, तीन युग्म इलेक्ट्रॉन बनते हैं । इसे त्रिबंध से प्रदर्शित करते है।

उदाहरण - नाइट्रोजन N_2 अणु का बनना - नाइट्रोजन परमाणु के बाहरी कोश में 5 इलेक्ट्रॉन होते है। जब दो नाइट्रोजन परमाणु एक दूसरे से आपस में तीन–तीन इलेक्ट्रॉनों

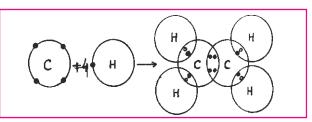


नाइट्रोजन अणु का बनना- (N=N)

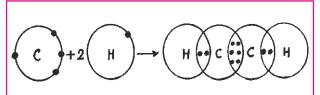
की साझेदारी करते हैं। तो दोनों नाइट्रोजन परमाणुओं के पास 8–8 इलेक्ट्रॉन हो जाते हैं। इस प्रकार तीन जोडी इलेक्ट्रॉनों की साझेदारी से नाइट्रोजन नाइट्रोजन के मध्य त्रिबंध (Triple bond) बनता है। इसे $N\equiv N\ (N_2\ \mbox{अणु})$ से दर्शाते हैं।


अन्य उदाहरण

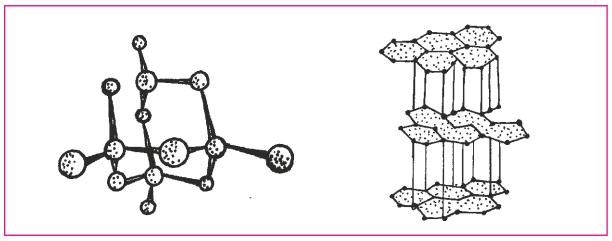
मिथेन (CH₄) अणु का बनना - कार्बन के बाहरी संयोजी कोश में चार इलेक्ट्रॉन होते है। यह चार इलोक्ट्रान हाइड्रोजन परमाणु के एक-एक इलेक्ट्रॉन की अलग-अलग साझेदारी करता है। इस तरह कार्बन के पास कुल 8 तथा प्रत्येक हाइड्रोजन के पास दो-दो इलेक्ट्रॉन हो जाते है।



10.3.1 सहसंयोजी यौगिकों के गुण-


- 1. भौतिक प्रकृति: सहसंयोजी यौगिक अधिकांशत: द्रव या गैस होते हैं। क्योंकि इनके अणुओं के बीच दुर्बल आकर्षण बल होता है। कुछ सहसंयोजी यौगिक जैसे ग्लूकोज, शर्करा, यूरिया, नैफ्थेलीन, ठोस भी होते हैं।
- 2. क्रिस्टल संरचना: सहसंयोजी यौगिकों के क्रिस्टल आयनों से न बने होकर अणुओं या परमाणुओं के बने होते हैं। ये क्रिस्टल तीन प्रकार के होते हैं-
- वे क्रिस्टल जिनके अणु छोटे और वाण्डरवाल्स बलों से जकड़े होते हैं- सल्फर, आयोडीन
- ii. वे क्रिस्टल जिनमें प्रत्येक परमाणु दूसरे परमाणु से सहसंयोजक बंधो द्वारा जुड़कर बड़ी-बड़ी सहसंयोजक संरचनाएं बनाते है: हीरा, सिलिका
- iii. वे क्रिस्टल जिनमें पृथक परतें होती हैं ग्रेफाइट

कार्बन डाइ ऑक्साइड अणु का बनना- (O=C=O)



एथिलीन अणु का बनना $-\frac{H}{H}C = C - \frac{H}{H}$

ऐसीटिलीन अणु का बनना - (H-C≡ C-H)

• (अध्याय 10 : P-147) •

हीरे की संरचना

ग्रेफाइट की संरचना

- 3. गलनांक एवं क्वथनांक यह संयोजी यौगिकों के गलनांक व क्वथनांक बहुत कम होते हैं। क्योंकि सहसंयोजी यौगिक उदासीन अणुओं से मिलकर बने होते हैं। इनके बीच दुर्बल आकर्षण बल को तोड़ने में बहुत कम उष्मा (ऊर्जा) लगती है। अपवाद के रूप में हीरे व ग्रेफाइट के गलनांक व क्वथनांक बहुत उच्च होते हैं।
- 4. विलेयता सहसंयोजी यौगिक पानी में अविलेय होते है किन्तु अध्रुवीय विलायक जैसे ईथर, ऐल्कोहल या कार्बनटेट्राक्लोराइड में घुल जाते है।
- 5. चालकता सहसंयोजी यौगिक विद्युत के कुचालक होते हैं, क्योंकि सहसंयोजी यौगिकों में आयन नहीं होते। कुछ सहसंयोजी यौगिक जो ध्रुवीय होते है विद्युत के अतिअल्प चालक होते है।

तालिका 10.3 कुछ सह संयोजी यौगिक					
क्र.	नाम	सूत्र	उपस्थित तत्व		
1.	एल्कोहल	C₂H₅OH	C, H और O		
2.	हाइड्रोजन क्लोराइड गैस	HCI	H और CI		
3.	हाइड्रोजन सल्फाइड गैस	H_2S	H और S		
4.	कार्बन डाईसलइड	CS ₂	C और S		
5.	ग्लूकोस	$C_6H_{12O_6}$	C, H और O		
6.	शक्कर	C ₁₂ H ₂₂ O ₁₁	C, H और O		
7.	यूरिया	CO (NH ₂) ₂	C, O, N और H		

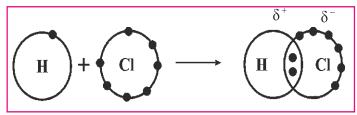
🗕 (अध्याय 10 : P-148) 🗕

क्रिया कलाप -एक बीकर में एक बार सोडियम क्लोराइड का विलयन लेकर उसमें कार्बन इलेक्ट्रोड डालिये इलेक्ट्रोडों को बैटरी के दोनों सिरों से जोड दीजिए। परिपथ में एक कुंजी (K) व एक बल्व (B) लगाइये। क्या कुंजी (K) को दबाने से बल्ब (B) जलता है? दूसरी बार बीकर में शक्कर का विलयन लेकर पुन: उपरोक्त प्रयोग को दोहराइये। क्या कुंजी K को दबाने से बल्ब (B) जलता है।

आप देखेंगे कि पहली बार बीकर में जब सोडियम क्लोराइड होता है तो बल्ब जलता है। लेकिन दूसरी बार शक्कर विलयन में बल्ब नहीं जलता। सोडियम क्लोराइड (NaCl) वैद्युत संयोजी यौगिक है, अत: NaCl का विलयन विद्युत का सुचालक होने के कारण बल्व जल उठता है। शक्कर सहसंयोजी यौगिक होने के कारण इसके विलयन में से विद्युत प्रवाहित नहीं होती है इसलिए बल्ब नहीं जलता है।

तालिका 10.4 वैद्युत संयोजी एवं सहसंयोजी यौगिको में अंतर

		,
क्र.	वैद्युत संयोजी यौगिक (आयनिक यौगिक)	सह संयोजी यौगिक
1.	वैद्युत संयोजी यौगिक सामान्यत: क्रिस्टलीय ठोस होते हैं।	सह संयोजी यौगिक सामान्यत: ठोस द्रव या गैस अवस्था में होते हैं।
2.	वैद्युत संयोजी यौगिको के गलनांक एवं क्वथनाक उच्च होते है। यही कारण है कि वैद्युत संयोजी यौगिक अवाष्पशील होते हैं।	सह संयोजी यौगिको के गलनांक व क्वथनांक बहुत कम (निम्न) होते हैं। इसी कारण कपूर, ईथर आदि पदार्थ रखे–रखे सामान्य ताप पर ही वाष्पित हो जाते हैं।
3.	वैद्युत संयोजी यौगिकों के जलीय विलयन या पिघली हुई अवस्था में विद्युत के सुचालक होते हैं।	सह संयोजी यौगिक विद्युत के सुचालक नहीं होते हैं। (ग्रेफाइट-अपवाद है जो विद्युत का सुचालक है।
4.	वैद्युत संयोजी यौगिक जल में विलेय होते हैं।	यह संयोजी यौगिक जल में नहीं घुलते हैं।
5.	वैद्युत संयोजी यौगिक कार्बनिक अध्रुवीय विलायक जैसे कार्बन टेट्रा क्लोराइड, ईथर, ऐसीटोन आदि में अविलेय होते है।	सह संयोजी यौगिक कार्बनिक अध्रुवीय विलायको में घुल जाते हैं।
6.	वैद्युत संयोजी आबंध बनते समय परमाणु के द्वारा स्थानांतरित (देने या लेने वाले) इलेक्ट्रानों की संख्या को उस परमाणु की वैद्युत संयोजकता कहते है।	सह संयोजी बंध बनाते समय किसी परमाणु के जितने इलेक्ट्रॉन साझा करते हैं उन इलेक्ट्रानों की संख्या को उस परमाणु की सहसंयोजकता कहते है।


• (अध्याय 10 : P-**149**) **-**

_	
इन प्रश	नों के उत्तर स्वयं खोजिए -
प्रश्न 1.	निम्न तीन तत्व A, B व C के इलेक्ट्रॉनिक विन्यास को देखकर बताइये कौन-कौन से तत्व अक्रिय हैं। औ
	क्यों? $A = 2, 2, B = 2, 8, 2, C = 2, 8, 8$
प्रश्न 2.	परमाणु क्रमांक ८ व 10 के तत्वों के नाम व इलेक्ट्रानिक विन्यास लिखिये।
प्रश्न 3.	किसी परमाणु को स्थायी अवस्था प्राप्त करने हेतु का इलेक्ट्रानिक विन्यास प्राप्त करना होता है।
प्रश्न 4.	किसी परमाणु के द्वारा देने या लेने वाले इलेक्ट्रानों को उस परमाणु की कहते है।
प्रश्न 5.	यौगिक बनते समय परमाणु के द्वारा करने वाले इलेक्ट्रानों की संख्या को परमाणु के सहसंयोजकता कहते है।
प्रश्न 6.	एक तत्व Al समूह 13 का सदस्य है। इसके ऑक्साइड का सूत्र क्या होगा जबकि Al (एल्युमिनियम) के विद्युत संयोजकता +3 तथा ऑक्सीजन की विद्युत संयोजकता – 2 है।
प्रश्न ७.	नीचे चार तत्वों A, B, C, D के इलेक्ट्रॉनिक विन्यास दिया गया है।
	A = 1, B = 2, 1, C = 2, 4 D = 2, 8, 7
	उपरोक्त इलेक्ट्रॉनिक विन्यास को देखकर बताइये इन यौगिकों में किस प्रकार का आबंध होगा।
	(i) BD (ii) AD (iii) CD_4 (iv) D_2
प्रश्न 8.	निम्न परमाणु क्रमांक वाले तत्वों के बीच आयनिक बंध बनेगा या सहसंयोजी बंध बताइये?
	(क) परमाणु क्रमांक ३ और १ (ख) परमाणु क्रमांक ६ और १७
	(ग) परमाणु क्रमांक ११ और १६ (घ) परमाणु क्रमांक १ और १७
प्रश्न ९.	(क) जब दो परमाणुओं के मध्य इलेक्ट्रानों की साझेदारी होती है तब एकल बंध बनता है।
	(ख) जब दो परमाणुओं के मध्य दो जोडी इलेक्ट्रानों की साझेदारी होती है तब बनता है।
	(ग) नाइट्रोजन N ₂ में N व N के मध्य होता है।

10.4 ध्रुवीय सह संयोजी बंध – जब सहसंयोजी बंध बनाने वाले परमाणु की विद्युत ऋणात्मकता* के मानों में अंतर होता है तब उनके बीच ध्रुवीय सहसंयोजी बंध बनता है। जिस परमाणु की ऋण विद्युतता अधिक होती है, साझे के इलेक्ट्रॉनों को वह अपनी ओर आकर्षित कर लेता है। अधिक ऋणविद्युतीय परमाणु पर आंशिक ऋण आवेश तथा कम ऋणविद्युतीय परमाणु पर आंशिक धन आवेश आ जाता है। आंशिक धन व आंशिक ऋण आवेश को ग्रीक अक्षर डेल्टा धन (δ^+) तथा डेल्टा ऋण (δ^-) द्वारा दर्शाते है। उदाहरणार्थ – HCI अणु मे हाइड्रोजन परमाणु की वैद्युत ऋणात्मकता का मान कम तथा क्लोरीन परमाणु की ऋणविद्युतता अधिक है। अतः साझेदारी के इलेक्ट्रॉन को क्लोरीन

^{*} विद्युत ऋणात्मकता (Electronegativity)- परमाणु की इलेक्ट्रॉन को अपनी ओर आकर्षित करने की क्षमता को ऋणविद्युतता, या विद्युत ऋणात्मकता (Electronegativity) कहते है।

परमाणु अपनी ओर आकर्षित कर लेता है। फलस्वरूप क्लोरीन पर आंशिक ऋण आवेश (δ^-) तथा हाइड्रोजन पर आंशिक धन आवेश (δ^+) आ जाता है।

हाइड्रोजन क्लोराइड का बनना

अर्थात अत: जब दो असमान प्रकृति वाले परमाणुओं के मध्य इलेक्ट्रानों का सहभाजन होता है, तो सहभाजित इलेक्ट्रान युग्म अधिक विद्युत ऋणात्मकता वाले परमाणु की तरफ विस्थापित हो जाता है। इस प्रकार से निर्मित आंबध को ध्रुवीय सहसंयोजी बंध (Polar covalent bond) कहते है।

ध्रुवीय सह संयोजी यौगिकों के गुण

- 1. ध्रुवीय सह संयोजी यौगिकों में लगभग 80% सहसंयोजी तथा 20% आयिनक गुण होते हैं। अर्थात कुछ गुण सहसंयोजी यौगिकों के तथा कुछ गुण वैद्युत संयोजी यौगिकों के समान होते है।
- 2. ध्रुवीय सह संयोजी यौगिक विलयन रूप में विद्युत के सुचालक होते है। यही कारण है कि HCI हाइड्रोक्लोरिक अम्ल विद्युत का सुचालक है।
- 3. ध्रुवीय सह संयोजक यौगिकों के गलनाक व क्वथनांक शुद्ध अध्रुवीय सह संयोजी यौगिकों से अधिक तथा आयिनक यौगिकों के गलनांक क्वथनांक से उच्च होते है। आवर्त सारणी के अधातु तत्वों और समूह 14, 15, 16 एवं 17 के तत्वों के बीच सहसयोंजी बंध बनाते है।

इन प्रश्नों के उत्तर स्वयं खोजिये

- प्रश्न 1. निम्नलिखित में से कौन से यौगिक वैद्युत संयोजी एवं कौन से यौगिक सहसंयोजी है? यूरिया, शक्कर, नमक, अमोनियम क्लोराइड, कार्बन–ट्रेटा क्लोराइड, हाइड्रोजन क्लोराइड, अमोनिया, एल्कोहॉल मैग्नीशियम क्लोराइड, जल।
- प्रश्न 2. निम्नांकित अणुओं में से ध्रुवीय सहसंयोजक अणु कौन कौन से है।

H₂, HCI, HF, CI₂, H₂O, NH₃, O₂

प्रश्न 3. विद्युत ऋणात्मकता की परिभाषा लिखिये।

प्रश्न 4. कोई चार यौगिकों के नाम लिखिये जिनमें सहसंयोजक एवं वैद्युत संयोजक दोनों प्रकार के बंध होते है।

प्रश्न 5. CI, H, O, C और N में किस तत्व की विद्युत ऋणात्मकता है :-

क. न्यूनतम ख. अधिकतम

10.5 रासायनिक अभिक्रियाएँ (Chemical Reaction) – रासायनिक अभिक्रिया यह प्रक्रिया है जिसमें दो या दो से अधिक पदार्थ आपस में क्रिया करके नया पदार्थ बनाते है। क्रिया करने वाला पदार्थ तत्व का आयन या यौगिक भी हो सकता है। रासायनिक अभिक्रिया के पश्चात बनने वाला नया पदार्थ भी तत्व आयन या यौगिक हो सकते है। रासायनिक अभिक्रिया के दौरान प्रारंभ में क्रिया करने वाले पदार्थों को क्रियाकारक (Reactants) तथा क्रिया के पश्चात बनने वाले पदार्थों को क्रियाफल या उत्पाद (Product) कहते हैं।

= (अध्याय 10 : P-151) =

दैनिक जीवन में भी कई रासायनिक अभिक्रियाएं जाने, अनजाने में देखने को मिलती है जैसे दूध का दही में जमना, लोहे पर जंग लगना, पाचन संस्थान के द्वारा जटिल भोज्य पदार्थों का सरल भोज्य पदार्थों में परिवर्तन होना। ये सभी रासायनिक अभिक्रियाओं के उदाहरण हैं।

रासायनिक अभिक्रिया को सांकेतिक रूप से व्यक्त करने की विधि को रासायनिक समीकरण कहते है। रासायनिक समीकरण लिखने के लिये यौगिकों को उनके रासायनिक सूत्रों के रूप में लिखा जाता है।

10.5.1 सरल यौगिकों के रासायनिक सूत्र एवं नामकरण

किसी यौगिक के एक अणु में उपस्थित तत्वों के परमाणुओं के संकेत व उनकी संख्या को उस यौगिक का रासायनिक सूत्र कहते हैं।

किसी यौगिक का रासायनिक सूत्र वह संक्षिप्त प्रदर्शन है जिसे देखकर यह पता चलता है कि यौगिक के अणु बनने में कौन-कौन से तत्वों ने भाग लिया है तथा किस तत्व के कितने परमाणु मिलकर यौगिक बना रहे हैं। दूसरे शब्दों में कह सकते हैं कि किसी यौगिक के निर्माण में भाग लेने वाले अवयवी तत्वों के संकेत व उनकी संख्या को एक साथ लिखने से प्राप्त सूत्र को यौगिक का रासायनिक सूत्र कहते हैं।

उदाहरण - जल के अणु में दो हाइड्रोजन परमाणु व एक आक्सीजन परमाणु है। हाइड्रोजन के संकेत H के नीचे उनकी संख्या 2 तथा आक्सीजन का संकेत O एक साथ इस तरह लिखा जाता है। (भाग लेने वाले परमाणु की संख्या एक हो तो उसे परमाणु के साथ नहीं लिखा जाता है)

$$H_2O$$
 (सही) H_2O_1 (गलत)

कैल्शियम हाइड्रॉक्साइड का रासायनिक सूत्र $Ca(OH)_2$ है। इसका अर्थ है – एक कैल्शियम परमाणु, ऑक्सीजन व हाइड्रोजन के दो–दो परमाणु।

आयनिक यौगिक धातु एवं अधातु परमाणुओं के बीच इलेक्ट्रॉन स्थानांतरण के परिणामस्वरूप बनते है। इनके रासायनिक सूत्र लिखते समय धातु परमाणु के संकेत को बांयी ओर तथा अधातु परमाणु के संकेत को दांयी ओर लिखा जाता है। धातु परमाणु का नाम वही रहता है, किन्तु अधातु के नाम में आइड (ide) या ऐट (ate) आदि प्रत्यय जोड़े जाते हैं।

तालिका 10.5 (एक धातु एवं एक अधातु से बने यौगिक)

यौगिक बनने में भाग लेने वाला धातु परमाणु		यौगिक बनने में भाग लेने वाला अधातु परमाणु		यौगिक का नाम	योगिक का रासायनिक सूत्र
नाम एवं संकेत	संख्या	नाम एवं संकेत	संख्या		
कैल्शियम (Ca)	1	आक्सीजन (O)	1	कैल्शियम आक्साइड	CaO
मैग्नीशियम (Mg)	1	क्लोरीन (CI)	2	मैग्नीशियम क्लोराइड	MgCl ₂
एल्यूमिनीयम (AI)	1	क्लोरीन (CI)	3	एल्यूमीनियम क्लोराइड	AICI ₃

• (अध्याय 10 : P-152) **-**

सहसंयोजी यौगिक दो अधातुओं के बीच बनते हैं इनमें अपेक्षाकृत कम विद्युत ऋणात्मक अधातु को बांयी, ओर तथा अधिक विद्युत ऋणात्मक अधातु को दांयी ओर (Right Side) लिखा जाता है। दांयी ओर की अधातु में आइड (ide) आदि प्रत्यय जोडा जाता है।

जैसे हाइड्रोजन व क्लोरीन मिलकर यौगिक बनता है इसमें हाइड्रोजन कम ऋणविद्युतीय अधातु तथा क्लोरीन उच्च ऋणविद्युतीय अधातु है अत: इस यौगिक का नाम हाइड्रोजन क्लोराइड होगा इसका रासायनिक सूत्र HCI होगा। यौगिक में परमाणु के एक से अधिक होने पर डाई, ट्राई और टेट्रा उपसर्ग लगाये जाते है।

तालिका 10.6 दो धातुओं से बने यौगिक

क्र.	निम्न ऋण विद्युतीय		उच्च ऋण विद्युतीय		रासायनिक नाम	अणुसूत्र
	अधातु		अधातु			
	नाम एवं संकेत	संख्या	नाम एवं संकेत	संख्या		
1.	कार्बन (C)	1	आक्सीजन (O)	1	कार्बन मोनोआक्साइड	CO
2.	कार्बन (C)	1	ऑक्सीजन (O)	2	कार्बन डाइ आक्साइड	CO ₂
3.	फास्फोरस (P)	1	क्लोरीन (CI)	3	फास्फोरस ट्राइक्लोराइड	PCI ₃
4.	कार्बन (C)	1	क्लोरीन (CI)	4	कार्बन टेट्रा क्लोराइड	CCI ₄
5.	नाइट्रोजन (N)	2	ऑक्सीजन (O)	5	नाइट्रोजन पेंटाक्साइड	N_2O_5

10.5.2 यौगिक का बनना : वैद्युत संयोजकताओं के एक दूसरे में अंतरपरिवर्तन अथवा क्रिस-क्रास लिखने से अणु का रासायनिक सूत्र बनता है। अर्थात् Mg की 2 संयोजकता Cl पर तथा क्लोरीन की एक Mg पर रखकर अणु Mg Cl₂ बनता है यहां आवेश को स्थानान्तरित नहीं करते। ठीक इसी प्रकार C व ऑक्सीजन आपस में जुडते है तो-

तत्व C O C O C₂O₄ संयोजकता 4 2 4 2

इस प्रकार C_2O_4 बनता है लेकिन इन दोनों में 2 समान है अतः इसे 2 से भाग देने पर $(C_2O_4/2)$ CO_2 प्राप्त होता है अतः कार्बन डाइ आक्साइड का सरल सूत्र CO_2 हुआ।

इसी प्रकार Na^{+} CO_{3}^{-2} से $Na_{2}CO_{3}$ AI^{+3} SO_{4}^{-2} से AI_{2} $(SO_{4})_{3}$ Mg^{+2} N^{-3} से $Mg_{2}N_{3}$

आदि यौगिको का बनना समझा जा सकता है। इसके लिए आवश्यक है कि तत्वों की संयोजकता ज्ञात हो अत: कुछ तत्वों की संयोजकता यहां दी जा रही है।

तालिका 10.7 कुछ सामान्य एक परमाण्विक आयनों की वैद्युत संयोजकता (आवेश)

क्र.	आयन का नाम	सूत्र	वैद्युत संयोजकता (आवेश)
1.	कापर* आयन (क्यूप्रस)	Cu ⁺	+ 1
2.	क्यूप्रिक	Cu ⁺⁺	+ 2
3.	सोडियम	Na⁺	+ 1

• (अध्याय 10 : P-**153**) **-**

4.	सिल्वर	Ag⁺	+ 1
5.	मैग्नीशियम	Mg ²⁺	+ 2
6.	जिंक	Zn ²⁺	+ 2
7.	एल्यूमीनियम	Al ³⁺	+ 3
8.	ब्रोमाइड	Br1	- 1
9.	आयोडाइड	 -1	- 1
10.	ऑक्साइड	O ²⁻	- 2
11.	सल्फाइड	S ²⁻	- 2
12.	नाइट्राइड	N³-	- 3

^{*}कुछ तत्व एक से अधिक संयोजकता प्रदर्शित करते है। कम सयोजकता को 'अस' तथा अधिक संयोजकता को 'इक' प्रत्यय लगाकर दर्शाते हैं।

तालिका 10.7 कुछ बहुपरमाण्विक आयनों की वैद्युत संयोजकता (आवेश)

क्र.	आयन का नाम	सूत्र	वैद्युत संयोजकता (आवेश)
1.	हाइड्रोजन कार्बोनेट (बाइकार्बोनेट)	HCO ₃ -	-1
2.	हाइड्रॉक्साइड	OH-	-1
3.	नाइट्रेट	NO ₃ -	-1
4.	कार्बोनेट	CO ₃ 2-	-2
5.	सल्फेट	SO ₄ 2-	-2
6.	क्रोमेट	CrO ₄ ^{2–}	-2
7.	फास्फेट	PO ₄ 3-	-3
8.	अमोनियम	NH ₄ ⁺	+1

इन प्रश्नों के उत्तर स्वयं खोजिये

- (1) निम्नांकित यौगिकों के सूत्र लिखिये।
 - अ. अमोनियम कार्बोनेट ब. बेरियम सल्फेट
- स. कैल्शियम फास्फेट
- (2) निम्नलिखित यौगिकों के सूत्र देखकर नाम लिखिये?
 - अ. Ca(OH)₂
- ब. K₂SO₄
- स. KI
- (3) निम्नांकित आयनों से मिलकर बने यौगिकों के नाम एवं सूत्र लिखिये।
 - अ. सोडियम आयन एवं बाइकार्बोनेट आयन व. अमोनियम आयन एवं सल्फेट आयन
 - स. जिंक आयन एवं फास्फेट आयन द. एल्यूमीनियम आयन एवं ऑक्साइड आयन
- (4) एक धातु ${\sf M}$ के कार्बोनेट का सूत्र ${\sf M}_2$ (${\sf CO}_3$) $_3$ है।
 - अ. धातु M की संयोजकता क्या होगी?
- ब. धातु M के फ्लोराइड का सूत्र क्या होगा?

• (अध्याय 10 : P-**154**) •

10.6 साधारण रासायनिक अभिक्रियाएं (Simple Chemical Reactions)

किसी रासायनिक अभिक्रिया में भाग लेने वाले पदार्थों के संकेत व सूत्रों की सहायता से अभिक्रिया को संक्षिप्त रूप में व्यक्त करने की विधि को रासायनिक समीकरण कहते है।

- क्रिया करने वाले पदार्थ अर्थात् क्रियाकारकों के संकेत या सूत्रों को बांयी ओर लिखा जाता है। एक से अधिक क्रियाकारकों के बीच योग (+) का चिन्ह लगाया जाता है।
- 2. क्रिया के पश्चात बनने वाले पदार्थ क्रियाफल या उत्पादों को दांयी ओर लिखा जाता है। एक से अधिक क्रियाफलों के बीच योग (+) का चिन्ह लगाया जाता है।
- 3. क्रियाकारक (अभिकारकों) एवं क्रियाफल (उत्पादों) के बीच (→) का चिन्ह लगाया जाता है। जिंक और तनु सल्फ्यूरिक अम्ल की अभिक्रिया का उदाहरण लेकर समझते हैं। इन दोनों की अभिक्रिया से जिन्क सल्फेट बनता है तथा हाइड्रोजन गैस निकलती है। इसे निम्न प्रकार लिख सकते हैं।

इन सभी निर्देशों के आधार पर उपरोक्त अभिक्रिया को निम्नानुसार प्रदर्शित करते हैं-

$$Zn + H_2SO_4$$
 $Zn SO_4 + H_2$ 3 त्पाद (क्रियाफल)

- 4. समीकरण को और अधिक सूचनाप्रद बनाने के लिये तीर के निशान के ऊपर व नीचे अभिक्रिया का ताप, दाब एवं उत्प्रेरक का नाम लिख दिया जाता है।
- गैसीय पदार्थों के पास दायीं ओर (↑) का निशान तथा अवक्षेपित होने वाले पदार्थों (भारी पदार्थों) के पास दांयी ओर
 (↓) का निशान लगाया जाता है।
- 6. जिन अभिक्रियाओं के दौरान ऊष्मा अवशोषित होती है उन्हें ऊष्माशोषी अभिक्रियाएं कहते है। इनमें क्रियाकारकों की ओर + Q (ऊष्मा) लिखा जाता है।
- 7. पदार्थों के जलीय विलयन (aquous solution) के लिये (aq) लिखा जाता है।

अन्य उदाहरण

$$Ca (OH)_2 (aq)$$
 +
 $CO_2 (g)$
 —
 $CaCO_3 \downarrow$
 + $H_2O_{(2)}$

 कैल्शियम हाइड्रॉक्साइड
 कार्बन डाई
 कैल्शियम
 जल

 (जलीय विलयन)
 आक्साइड (गैस)
 कार्बोनेट
 (द्रव)

 (सफेद अवक्षेप \downarrow)

 $N_2 (g)$
 +
 $O_2 \uparrow$
 +
 $O_3 \downarrow$

 नाइट्रोजन
 आक्सीजन
 ऊष्माशोषी अभिक्रिया

🗕 (अध्याय 10 : P-155) 🗕

10.6.1 रासायनिक अभिक्रियाओं का संतुलन (Balancing of chemical Reactions)

रासायनिक समीकरण के बांयी ओर अभिकारकों के तत्वों के परमाणुओं की संख्या तथा दांयी ओर के उत्पादों के विभिन्न तत्वों के परमाणुओं की संख्या बराबर होती है। तब समीकरण को संतुलित समीकरण कहते है जैसे-

$$H_{g} + O_{g} \longrightarrow H_{g}O$$
 (असंतुलित समीकरण)

उपरोक्त उदाहरण में बांयी ओर हाइड्रोजन के 2 परमाणु और ऑक्सीजन के दो परमाणु है। समीकरण के दांयी ओर हाइड्रोजन के दो परमाणु तथा आक्सीजन का एक ही परमाणु है।

अर्थात–	परमाणु	क्रियाकारक	क्रियाफल
		(बायीं ओर)	(दायीं ओर)
	Н	2	2
	0	2	1

इसको देखकर लगता है कि क्रियाकारक में O (ऑक्सीजन) का एक परमाणु अधिक है, क्रिया कारकों का कुल द्रव्यमान, क्रियाफल के कुल द्रव्यमान के बराबर हो। अतः दोनों तरफ अलग–अलग परमाणुओं की संख्या बराबर होनी चाहिए। इसे ही रासायनिक समीकरणों का संतुलन कहते है। इससे द्रव्य के अविनाशिता के नियम की पृष्टि होती है। उक्त समीकरण को संतुलित नहीं माना जा सकता। यहां आक्सीजन अणु O_2 है जिसे O के रूप में भी नहीं लिख सकते। अतः संतुलन करते समय किसी यौगिक/ तत्व आदि को परिवर्तित नहीं किया जाना चाहिए। बल्कि संकेत को किसी संख्या से गुणा करना चाहिए।

अत: क्रियाफल में 2 का गुणा करने पर -

$$H_2 + O_2 \longrightarrow (H_2O) \times 2$$

अथवा
$$H_2 + O_2 \longrightarrow 2 H_2 O$$

यहां आक्सीजन की संख्या बराबर हुई लेकिन H की संख्या क्रियाकारकों में कम हो गई। पुन: क्रियाफल में भी H को 2 से गुणा कर दे-

$$2(H_2) + O_2 \longrightarrow 2 H_2O$$

अर्थात $2 H_2 + O_2 \longrightarrow 2 H_2O$

अब दोनों तरफ परमाणुओं की संख्या बराबर हो गई और यह समीकरण संतुलित है। इस प्रकार अनुमान विधि द्वारा किसी भी समीकरण को तुरन्त सन्तुलित कर लेते हैं। समीकरण संतुलन की इस विधि में कभी–कभी ऐसा भी होता है कि एक तत्व के परमाणुओं की संख्या बराबर करने में दूसरे तत्व की संख्या का मान जो पहले बराबर था असंतुलित हो जाता है। अत: कक्षा 9वीं के छात्रों को समीकरण पेंसिल से ही संतुलित करना चाहिये तब पूर्ण संतुलित समीकरण प्राप्त हो तो उन्हें पेन से सही अंक लिखने चाहिये। इस विधि में प्रयास करने के बाद त्रुटिसुधार करते हुए अंत में संतुलित समीकरण प्राप्त होता है।

यही कारण है कि समीकरण संतुलन की इस विधि को अनुमान विधि (Hit & Trial) भी कहते है। समीकरण संतुलन का जितना अधिक अभ्यास किया जावेगा उतना ही आप समीकरण संतुलन में कुशल हो पाऐंगे।

----- (अध्याय 10 : P-**1**56) -----

इन प्रश्नों के उत्तर स्वयं खोजिये?

- निम्न प्रभावों को आप किसी रासायनिक अभिक्रिया में कैसे दर्शाओगे?
 - (a) गैस का निकलना (b) अवक्षेप का बनना (c) किसी पदार्थ का जलीय विलयन (d) ऊष्पाक्षेपी अभिक्रियाएं (e) ऊष्माशोषी अभिक्रिया
- 2. निम्नलिखित रासायनिक समीकरणों को संतुलित कीजिये एवं संकेतो का उपयोग कीजिए जिसमें समीकरण अधिकतम सूचनाप्रद बने।
 - (a) $NH_3 \longrightarrow N_2 + H_2$
 - (b) Fe + $Cl_2 \longrightarrow FeCl_3$
 - (c) AI (OH)₃ \longrightarrow AI₂O₃ + H₂O
- 3. नीचे लिखे वाक्यों को संतुलित रासायनिक समीकरणों के रूप में लिखिये।
 - अ. मिथेन, ऑक्सीजन में जलकर कार्बन डाइऑक्साइड और पानी बनाती है।
 - ब. हाइडोजन गैस नाइट्रोजन से संयोग करके अमोनिया बनाती है।
 - स. फास्फोरस ऑक्सीजन में जलकर फास्फोरस पेंटाक्साइड बनता है।

10.6.2 रासायनिक अभिकियाओं के प्रकार

रसायनिक अभिक्रिया किस विधि से संपन्न होती है। इस आधार पर रासायनिक अभिक्रियाएं मुख्य रूप से निम्न प्रकार की होती है।

- (1) योगात्मक अभिक्रियाएँ
- (2) अपघटन अभिक्रियाएँ
- (3) प्रतिस्थापन अभिक्रियाएँ
- (4) ऑक्सीकरण एवं अपचयन अभिक्रियाएँ।

10.7 योगात्मक अभिक्रियाएँ

ऐसी अभिक्रियाएं जिनमें दो या दो से अधिक पदार्थ जुडकर एक नया यौगिक बनता है योगात्मक अभिक्रिया कहलाती है।

उदाहरण - (1) मैग्नीशियम एवं ऑक्सीजन को गर्म करने पर मैग्नीशियम ऑक्साइड बनता है।

$$2Mg + O_2 \longrightarrow 2MgO$$

मैग्रीशियम आक्सीजन मैग्रीशियम आक्साइड

10.8 अपघटन अभिक्रियाएँ-

वे अभिक्रियाऐ जिनमें किसी यौगिक के रासायनिक आबंध टूटकर दो या दो से अधिक सरलतम यौगिक बनाते हैं,अपघटन अभिक्रियाऐं कहते है। ऐसी अभिक्रियाओं में ऊष्मा, प्रकाश व विद्युत का उपयोग आबंध तोडने में होता है। उदाहरण - (1) कैल्शियम कार्बोनेट को गर्म करने पर वह कैल्शियम ऑक्साइड तथा कार्बन डाई आक्साइड में अपघटित हो जाता है।

$$CaCO_3$$
 $\xrightarrow{350 \text{ HI}}$ CaO + CO_2

कैल्शियम कार्बोनेट

कैल्शियम आक्साइड कार्बन डाई आक्साइड

शरीर में भोजन का पाचन भी एक अपघटन अभिक्रिया है। इसमें जटिल खाद्य पदार्थ (प्रोटीन, कार्बोहाइड्रेट एवं वसा) सरल यौगिकों में टूट जाते हैं।

धातुओं के अयस्को से धातुओं के निष्कर्षण में भी अपघटन अभिक्रियाओं का उपयोग होता है।

10.9 प्रतिस्थापन अभिक्रियाएँ -

वे अभिक्रियाऐं जिनमें अभिक्रिया के दौरान एक तत्व का स्थान दूसरा तत्व ले लेता है। तथा वसा यौगिक बनाते है। प्रतिस्थापन अभिक्रियाऐ कहलाती है।

प्रतिस्थापन अभिक्रियाओं में अधिक क्रियाशील तत्व तुलनात्मक कम क्रियाशील तत्व को उसके यौगिकों में से विस्थापित कर देता है।

उदाहरण - 1

कॉपरसल्फेट के विलयन में जिंक की पटटी (Strip) डुबाई जाती है तो जिंक की पट्टी पर Cu (कॉपर) जमा हो जाता है। कॉपर कम क्रियाशील धातु है, जिंक अधिक क्रियाशील धातु है। अत: जिंक, कॉपर को कॉपर सल्फेट में से विस्थापित कर देता है तथा जिंक सल्फेट बनता है।

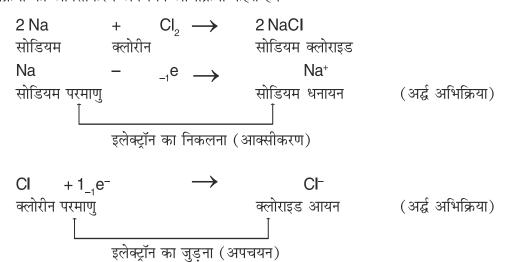
CuSO
$$_{4(ag)}$$
+ Zn(s)ZnSO $_{4(ag)}$ + Cu (s)कॉपर सल्फेटजिंकजिंक सल्फेटकॉपर(नीला बिलयन)

इस प्रकार $CuSO_4$ का नीला रंग धीरे-धीरे $ZnSO_4$ बनने के कारण रंगहीन हो जाता है।

तालिका 10.9 तत्वों की सिक्रयता श्रेणी

	पोटेशियम	K	अधिक क्रियाशील तत्व
हाइड्रोजन से	सोडियम	Na	
ऊपर आने	केल्शियम	Ca	
वाली धातुएँ	मैग्नीशियम	Mg	
हाइड्रोजन से अधिक	एल्युमिनीयम	Al	क्रियाशीलता
क्रियाशील होती है।	जिंक	Zn	का
	आयरन	Fe	घटता क्रम
	टिन	Sn	
	लेड	Pb	
←	—— हाइड्रोजन	Н	
हाइड्रोजन से	कॉपर	Cu	
नीचे आने वाली	मरकरी(पारा)	Hg	
धातुएँ हाइड्रोजन से	सिल्वर	Ag	
कम क्रियाशील	गोल्ड	Au	कम क्रियाशील तत्व
होती है।			

🗕 (अध्याय 10 : P-158) —


10.10 आक्सीकरण अपचयन अभिक्रियाएँ

प्रारंभ में केवल यह माना जाता था कि आक्सीजन का जुड़ना या हाइड्रोजन का निकलना ऑक्सीकरण अभिक्रिया होती है। इसके विपरीत हाइड्रोजन का जुड़ना तथा आक्सीजन का निकलना अपचयन अभिक्रिया होती है।

ऑक्सीकरण- अपचयन - (इलेक्ट्रॉन स्थानान्तरण के आधार पर) ऑक्सीकरण अपचयन को इलेक्ट्रान खोने व प्राप्त करने के आधर पर भी इस प्रकार समझाया गया है।

- 1. वह अभिक्रिया जिसमें परमाणु या आयन इलेक्ट्रान खोता है (Loss of electron) उसे ऑक्सीकरण अभिक्रिया कहते है।
- 2. वह अभिक्रिया जिसमें परमाणु या आयन इलेक्ट्रान ग्रहण करता है (gain of electron) उसे अपचयन अभिक्रिया कहते है।

हम कह सकते हैं कि इलेक्ट्रान का निकलना आक्सीकरण एवं इलेक्ट्रान का जुड़ना अपचयन कहलाता है। उदाहरणार्थ – सोडियम धातु क्लोरीन से क्रिया कर सोडियम क्लोराइड बनाती है। यहां सोडियम की क्लोरीन से क्रिया को ऑक्सीकरण अपचयन अभिक्रिया कहते है।

उक्त अभिक्रिया में Na सोडियम परमाणु से इलेक्ट्रॉन निकलता है, Na⁺ आयन बनता है। यह ऑक्सीकरण अभिक्रिया है। Na परमाणु से निकला हुआ इलेक्ट्रॉन क्लोरीन परमाणु द्वारा ग्रहण किया जाता है अत: क्लोरीन परमाणु का अपचयन होकर Cl⁻ आयन बनता है। यह अपचयन क्रिया है। ऑक्सीकरण अपचयन क्रिया सदैव एक साथ होती है, क्योंकि एक परमाणु या मूलक के द्वारा दिया गया इलेक्ट्रॉन दूसरे परमाणु या मूलक में जुडता है। अत: केवल ऑक्सीकरण एक अर्द्ध अभिक्रिया है। इसी तरह अपचयन भी एक अर्द्ध अभिक्रिया है।

इन प्रश्नों के उत्तर स्वयं खोजिये?

प्रश्न 1. निम्न अभिक्रियाओं में आक्सीकारक व अपचायको के नाम लिखिये?

(क)
$$CuO + H_2 \longrightarrow Cu + H_2O$$

(평)
$$PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$$

प्रश्न 2. निम्न में से कौन सी अभिक्रिया ऑक्सीकरण है, कौन सी अपचयन है।

(क) Na⁺
$$\frac{+_{-1}e}{}$$
 Na (ख) Na $\frac{-_{-1}e}{}$ Na⁺ (ग) Cl⁻ $\frac{-_{-1}e}{}$ Cl

(되) CI
$$\xrightarrow{+_{-1}e}$$
 CI (코) Fe²⁺ $\xrightarrow{-_{-1}e}$ Fe³⁺ (평) Fe³⁺ $\xrightarrow{+_{-1}e}$ Fe²⁺

स्मरणीय बिन्दु

- परमाणु आपस में एक दूसरे से जिस आकर्षण द्वारा जुड़ते हैं रासायिनक बंध कहते हैं।
- प्रत्येक तत्व अपना इलेक्ट्रॉनिक विन्यास निकटतम अक्रिय गैस के समान करना चाहता है। इसी कारण वह किसी अन्य तत्व के परमाणु से इलेक्ट्रॉन लेता, देता या साझा करता है।
- जब परमाणु इलेक्ट्रॉन लेकर या देकर अर्थात् इलेक्ट्रॉन स्थानान्तरण के कारण उत्पन्न आयनों के द्वारा एक दूसरे से जुड़ते हैं,
 उस बंध को आयनिक बंध या वैद्युत संयोजी बंध कहते है।
- जब परमाणु बराबर इलेक्ट्रॉनों की साझेदारी करके आपस में संयोग करते है तब उस बंध को सहसंयोजी बंध कहते हैं।
- एक जोडी इलेक्ट्रॉनों की साझेदारी से एकलबंध (-) दो जोडी इलेक्ट्रानों की साझेदारी से द्विबंध (=) तथा तीन जोडी इलेक्ट्रानों की साझेदारी से त्रिबंध (≡) बनते है।
- आयिनक यौगिक पानी में विलेय, उच्च गलनांक एवं क्वथनांक वाले क्रिस्टलीय ठोस होते है। धातु एवं अधातु के मध्य आयिनक बंध बनता है।
- सह संयोजी यौगिक पानी में अविलेय (शक्कर, ग्लूकोज यूरिया आदि को छोड़कर) लेकिन कार्बिनक विलायकों में विलेय होते है। सहसंयोजी यौगिक निम्न गलनांक एवं क्वथनांक वाले द्रव या गैस होते है। सहसंयोजी बंध सामान्यत: दो अधातु परमाणुओं की बीच बनता है।
- दो या दो से अधिक पदार्थों के संयोग को उनके संकेत या सूत्र के द्वारा संक्षेप में अधिकतम जानकारी देने की विधि को रासायनिक समीकरण कहते हैं।
- संतुलित रासायनिक समीकरण में अभिकारक पदार्थों के तत्वों के परमाणुओं की संख्या तथा क्रियाफल परमाणुओं की संख्या बराबर होती है।
- रासायनिक अभिक्रिया के दौरान जब दो पदार्थ आपस में जुडकर नया पदार्थ बनाते हैं, उसे योगात्मक अभिक्रिया कहते है।
 जैसे हाइड्रोजन व ऑक्सीजन से जल का बनना।
- 🔵 जब किसी पदार्थ के रासायनिक बंध टूटकर दो या दो से अधिक यौगिक (पदार्थ) बनाते है उसे अपघटन अभिक्रिया कहते हैं।
- जब कोई अधिक क्रियाशील तत्व किसी यौगिक में से कम क्रियाशील तत्व के परमाणु को विस्थापित करके नया यौगिक बनाता हैँ तब उस अभिक्रिया को विस्थापन अभिक्रिया कहते है।
- ऑक्सीकारक वह पदार्थ होता है जो दूसरे पदार्थ का ऑक्सीकरण कर देता है, किन्तु स्वयं अपचियत हो जाता है।
- अपचायक वह पदार्थ होता है जो दूसरे पदार्थ का अपचयन कर देता है किन्तु स्वयं ऑक्सीकृत हो जाता है।

अभ्यास

अतिलघु उत्तरीय प्रश्न

- 1. सोडियम का परमाणु क्रमाक 11 है इसके Na+ आयन में कितने इलेक्ट्रॉन होंगे?
- 2. क्लोरीन का परमाणु क्रमांक 17 है। क्लोराइड Cl- आयन में कितने इलेक्ट्रॉन होगे।
- 3. CCI4 तथा Ca CI, में किस किस प्रकार के बंध होगें?
- 4. पोटेशियम एवं ब्रोमीन से बनने वाले यौगिक का सूत्र एवं नाम लिखिये?
- 5. कोई एक ऐसे कार्बन के यौगिक का नाम बताइये जिसमें द्विबंध होता है।
- 6. साझे के इलेक्ट्रॉनों को अपनी ओर आकर्षित करने वाले गुण को क्या कहते है?
- 7. आवर्त सारिणी के समूह 14 का तत्व, समूह 17 के तत्व से संयोग करता है तो किस प्रकार का यौगिक बनता है तथा उसमें कौनसा बंध होता है?

- 8. एक ऐसी अक्रिय गैस का नाम बताइये जिसका इलेक्ट्रानिक विन्यास K+ तथा Cl— के इलेक्ट्रॉनिक विन्यास की तरह होगा।
- 9. निम्न यौगिकों के रासायनिक सूत्र लिखिये -
 - क. हाइड्रोजन सल्फाइड
- ख. कार्बन टेट्रा क्लोराइड
- 10. निम्न आयनों की संयोजकताएं लिखिए।
 - क. सोडियम
- ख. सल्फाइड
- ग. आयोडाइड

- घ. फास्फेट
- च. कापर
- छ. बेरियम
- 11. आक्सीकरण अपचयन को इलेक्ट्रॉनिक आधार पर परिभाषित करिए?

लघुउत्तरीय प्रश्न -

- 1. अक्रिय गैसों के संकेत, नाम एवं इलेक्ट्रॉनिक विन्यास लिखिये।
- 2. मैग्नीशियम परमाणु एवं मैग्नीशियम आयन का इलेक्ट्रॉनिक विन्यास लिखिये।
- 3. उस कण का नाम लिखिये जिसमें
 - (क) 11 प्रोटॉन 10 इलेक्ट्रॉन तथा 12 न्यूट्रॉन हो।
 - (ख) १७ प्रोटॉन १८ इलेक्ट्रॉन तथा १८ न्यूट्रॉन हों।
- 6. निम्नलिखित यौगिकों में किस प्रकार का रासायनिक बंध होगा।
 - (क) सोडियम हाइड्राक्साइड (NaOH)
 - (ख) हाइड्रोजन साइनाइड (HCN)
 - (ग) सल्फ्यूरिक अम्ल $(H_{3}SO_{4})$
 - (घ) कैल्शियम कार्बोनेट (CaCO₃)
- 7. समझाइये कि सिल्वर नाइट्रेट के साथ
 - (क) सोडियम क्लोराइड की क्रिया से सफेद अवक्षेप प्राप्त होता है।
 - (ख) कार्बनटेट्रा क्लोराइड की क्रिया से कोई अवक्षेप नहीं आता।
- 8. ध्रुवीय सहसंयोजी बंध का बनना उदाहरण देकर समझाइये?
- 9. एक तत्व के परमाणु A, जिसके बाहरी कोश में 4 इलेक्ट्रॉन हैं दूसरे तत्व के परमाणु B जिसके बाहरी कोश में 1 इलेक्ट्रॉन है, से संयोग करके यौगिक AB_4 बनाता है। प्राप्त यौगिक विद्युत का कुचालक है। यौगिक की इलेक्ट्रॉन बिंदु संरचना दीजिये।
- 10. संयोजकता बताइये -
 - (क) सल्फर डाई ऑाक्साइड में गंधक (S) की
 - (ख) एथिलीन में कार्बन (c) की
 - (ग) कैल्शियम आक्साइड में कैल्शियम (Ca) की
 - (घ) एल्यूमिनियम आक्साइड (Al_2O_3) में एल्युमिनियम (Al) की
- 11. निम्न रासायनिक समीकरणों को संतुलित कीजिये?

- (ক) $Mg + N_2 \longrightarrow Mg_3N_2$
- (ख) $CaC_2 + H_2O \longrightarrow C_2H_2 + Ca(OH)_2$
- 12. अपघटन अभिक्रियाएं किन्हें कहते है? दो उदाहरण दीजिये। अपघटन अभिक्रिया के अनुपयोग भी लिखिएे।
- 13. नीचे दिये गये रासायनिक समीकरण किस प्रकार की अभिक्रिया प्रदर्शित करते हैं?
 - (\overline{a}) CaO + CO₂ \longrightarrow CaCO₃
 - (ख) Mg + CuSO₄ ──── Mg SO₄ + Cu

दीर्घ उत्तरीय प्रश्न

- प्रश्न 1. रासायनिक आबंधन किसे कहते हैं? ये कितने प्रकार के होते है? कारण समझाइये कि तत्व आपस में संयोग क्यों करते है?
- प्रश्न 2. शून्य वर्ग की गैसें अक्रिय क्यों होती हैं, अन्य तत्वों से संयोग क्यों नहीं करती, विस्तार से समझाइये?
- प्रश्न 3. वैद्युत संयोजी यौगिकों एवं सहसंयोजी यौगिकों के गुणों में अंतर समझाइये।
- प्रश्न 4. एक रासायनिक समीकरण से कौन-कौन सी जानकारियां प्राप्त होती हैं? उदाहरण सहित वर्णन कीजिए।
- प्रश्न 5. वैद्युत संयोजी यौगिक विद्युत के सुचालक होते हैं तथा सहसंयोजी यौगिक विद्युत का चालन नहीं करते, यह दर्शाने हेतु एक प्रयोग का सचित्र वर्णन करिए?
- प्रश्न 6. रासायनिक अभिक्रियाएँ कितने प्रकार की होती है। उदाहरण सहित समझाइये।
- प्रश्न 7. ऑक्सीकरण एवं अपचयन को परिभाषित करते हुए 5-5 उदाहरण लिखकर समझाइये।

प्रोजेक्ट

अपनी दैनिक दिनचर्या में देखे जाने वाले विभिन्न यौगिकों की सूची बनाइये और शिक्षक की मदद से उनके रासायनिक अवयवों को ज्ञात कीजिए। बताइये कि यौगिकों के अवयवों में कौन-कौन सा बंध उपस्थित है। इस पर एक पुस्तिका तैयार कीजिए एवं अपने शिक्षक को जमा करिए।