SAMPLE QUESTION PAPER

Class X Session 2023-24

MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A				
	Section A consists of 20 questions of 1 mark each.				
1.	If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime	1			
	numbers, then the result obtained by dividing the product of the positive integers by the				
	LCM (a, b) is				
	(a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2				
2.	The given linear polynomial $y = f(x)$ has (a) 2 zeros (b) 1 zero and the zero is '3' (c) 1 zero and the zero is '4' (d) No zero 4^{-3} -2^{-1} 0^{-1} 1^{-2} 3^{-1} 0^{-1} 1^{-2} 3^{-2} 4^{-5} 5^{-1} 4^{-3} 4^{-5} 4	1			

3.	The lines representing the given pair of linear equations are non-intersecting. Which of the	1
	following statements is true?	
	(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	
	(c) $\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$	
	(d) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	
4.	The nature of roots of the quadratic equation $9x^2 - 6x - 2 = 0$ is:	1
	(a) No real roots (b) 2 equal real roots	
	(c) 2 distinct real roots (d) More than 2 real roots	
5.	Two APs have the same common difference. The first term of one of these is –1 and that of	1
	the other is – 8. The difference between their 4th terms is	
	(a) 1 (b) -7 (c) 7 (d) 9	
6.	What is the ratio in which the line segment joining (2,-3) and (5, 6) is divided by x-axis?	1
	(a) 1:2 (b) 2:1 (c) 2:5 (d) 5:2	
7.	A point (x,y) is at a distance of 5 units from the origin. How many such points lie in the third	1
	quadrant?	
	(a) 0 (b) 1 (c) 2 (d) infinitely many	
8.	In \triangle ABC, DE AB. If AB = a, DE = x, BE = b and EC = c.	1
	Then x expressed in terms of a, b and c is:	
	(a) $\frac{ac}{b}$ (b) $\frac{ac}{b+c}$ D	
	(c) $\frac{ab}{c}$ (d) $\frac{ab}{b+c}$ B E C	
9.	If O is centre of a circle and Chord PQ makes an angle 50° with the tangent PR at the point of contact P, then the angle subtended by the chord at the centre is P R	1
	(a) 130° (b) 100°	
	(c) 50° (d) 30°	

10.	A quadrilater	al PQRS is dr	awn to circu	mscribe a ciro	cle.	P	12 Q	1
	If PQ = 12 cm, QR = 15 cm and RS = 14 cm, then find the length of SP is							
	(a) 15 cm		(b) 14 cm				15	
	(b) (c) 12	2 cm	(d) 11 cm	1		S	14 R	
11.	Given that sin	$\theta = \frac{a}{b}$, then c	os θ is.					1
	(a) $\frac{b}{\sqrt{b^2-b^2}}$	$\overline{a^2}$	(b) $\frac{b}{a}$		(c) $\frac{\sqrt{b^2 - a^2}}{b}$	(d	$\frac{a}{\sqrt{b^2-a^2}}$	
12.	(sec A + tan A)	(1 – sin A) eq	uals:					1
	(a) sec A		(b) sin A		(c) cosec A	(0	l) cos A	
13.	If a pole 6 m	high casts a s	hadow 2 $\sqrt{3}$ r	n long on the	ground, then	the Sun's ele	evation is	1
	(a) 60°		(b) 45°		(c) 30°	(0	d) 90°	
14.	If the perime	ter and the a	rea of a circle	e are numerio	cally equal, th	nen the radiu	s of the circle	1
	is							
	(a) 2 unit	S	(b) π units	((c) 4 units	(d	l) 7 units	
15.	It is proposed	d to build a n	ew circular p	ark equal in a	area to the su	ım of areas o	f two circular	
	parks of diam	neters 16 m a	nd 12 m in a	locality. The	radius of the	new park is		
	(a) 10m	(b) 15m	(c) 20m	(d) 24m	
16.	There is a sq	uare board o	of side '2a' ui	nits circumsc	ribing a red	circle. Jayade	ev is asked to	1
	keep a dot or	n the above s	aid board. T	he probabili	ty that he ke	eps the dot o	on the shaded	
	region is.	Y						
	(a) $\frac{\pi}{4}$	(b)	$\frac{4-\pi}{4}$	(c) 7	$\frac{\tau-4}{4}$	(d) $\frac{4}{\pi}$		
17.	2 cards of hea	irts and 4 card	ls of spades a	re missing fro	m a pack of 5	2 cards. A ca	rd is drawn at	1
	random from t	the remaining	pack. What is	the probability	v of getting a b	lack card?		
	(a) $\frac{22}{52}$		(b) $\frac{22}{46}$	((c) $\frac{24}{52}$	(d)	$\frac{24}{46}$	
18.	The upper lin	nit of the moo	dal class of th	e given distri	bution is:			1
	Height [in cm]	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165	
	Number of	4	11	29	40	46	51	

Page 3	of 10	
Page 3	of 10	

	(a) 165	(b) 160	(c) 155	(d) 150	
19.	DIRECTION: In the	question number 19 a	nd 20, a statement of a	ssertion (A) is followed by	
	a statement of Reas	on (R). Choose the cor	rect option		
	Statement A (Asser	tion): Total Surface a	area of the top is the s	sum of the	
	curved surface area	of the hemisphere ar	d the curved surface a	rea of the	
	Statement R(Reaso	on) : Top is obtained l	by joining the plane su	rfaces of the	
	hemisphere and cor	ne together.		V	
	(a) Both assertio	n (A) and reason (R) a	are true and reason (R)	is the correct explanation	
	of assertion ((A)			
	(b) Both asserti	on (A) and reason (R) are true and reas	on (R) is not the correct	
	explanation of	of assertion (A)			
	(c) Assertion (A)	is true but reason (R)	is false.		
	(d) Assertion (A)	is false but reason (R)	is true.		
20.	Statement A (Asser	tion): -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$,	is in Arithmetic Prog	ression.	
				cannot have both positive	
	and negative ration	al numbers.			
	(a) Both assertio	n (A) and reason (R) a	are true and reason (R)	is the correct explanation	
	of assertion ((A)			
	(b) Both asserti	on (A) and reason (R) are true and reas	on (R) is not the correct	
	explanation of	of assertion (A)			
	(c) Assertion (A)	is true but reason (R)	is false.		
	(d) Assertion (A)	is false but reason (R)	is true.		
		SI	ECTION B		
		Section B consists of	5 questions of 2 mark	ts each.	
21.	Prove that $\sqrt{2}$ is an	irrational number			l

22.	ABCD is a parallelogram. Point P divides AB in the	2
	ratio 2:3 and point Q divides DC in the ratio 4:1.	
	Prove that OC is half of OA.	
23.	P From an external point P, two tangents, PA	2
23.	and PB are drawn to a circle with centre O.	2
	At a point E on the circle, a tangent is drawn	
	to intersect PA and PB at C and D, \mathbf{P}	
	respectively. If PA = 10 cm, find the	
	perimeter of $\triangle PCD$.	
24.	If tan (A + B) = $\sqrt{3}$ and tan (A – B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2
	[or]	
	Find the value of x if	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
25.	With vertices A, B and C of \triangle ABC as centres, arcs are drawn with radii 14 cm and the three	2
	portions of the triangle so obtained are removed. Find the total area removed from the	
	triangle.	
	[or]	
	14 cm	
	Find the area of the unshaded region shown in the given figure. 3 cm $3 cm$ $3 cm$ $14 cm$	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	National Art convention got registrations from students from all parts of the country, of	3
	which 60 are interested in music, 84 are interested in dance and 108 students are interested	
	Page 5 of 10	

n in minimum same artform idents in each quired if each				
idents in each				
quired if each				
3	3			
its is 66. If the 3	3			
e there?				
P. Chord AB	3			
makes an angle of 30° with the radius at the point of contact.				
of the radius				
Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove				
3	3			
, and the data 3	3			
	e there?			

Page **6** of **10**

		145 - 153	12			
		154 - 162	5			
		163 - 171	4			
		172 – 180	2			
	Find the mean length of	the leaves.	I			
		S	SECTION D			
	Sect	on D consists o	f 4 questions of 5 n	narks each	+	
32.			—	our more to go 24 km upstream		
021	than to return downstre					
			[or]		+	
	Two water tang togethe	con fill a tank ir	$\frac{3}{2}$ hours The tan	of larger diameter takes 10	-	
	I wo water taps togethe		8 8	of larger diameter takes 10		
	hours less than the smaller one to fill the tank separately. Find the time in which each tap					
	can separately fill the ta	nk.				
33.	(a) State and prove Basis (b) In the given figure 2 Prove that $\frac{AB}{BD} = \frac{AE}{FD}$	-				
34.	Water is flowing at the	rate of 15 km/h	through a nine of d	в и liameter 14 cm into a cuboidal	5	
	pond which is 50 m long 21 cm?	and 44 m wide.	In what time will th	e level of water in pond rise by s to be attained in 1 hour?		
	[or]					
	A tent is in the shape of	a cylinder surm	ounted by a conical	top. If the height and radius of		
	the cylindrical part are 3 m and 14 m respectively, and the total height of the tent is 13.5 m,					
	find the area of the can	vas required for	making the tent, k	eeping a provision of 26 m ² of		
		wastage Also fir	nd the cost of the car	was to be purchased at the rate		
	canvas for stitching and	wastage. mso, m	iu the cost of the car			

	90. Also find the m	node of the data.			
		Marks obtained	Number of students		
		20 - 30	p		
		30 - 40	15		
		40 - 50	25		
		50 - 60	20		
		60 - 70	q		
		70 - 80	8		
		80 - 90	10		
					<u> </u>
		SE	CTION E		
	Keeping her as a ru to earn gold in Oly Initially her throw athlete in school, s mornings and in improve the distan During the special 40 throws and even	e for an Indian female athlet ole model, Sanjitha is detern mpics one day. v reached 7.56m only. Bei he regularly practiced both the evenings and was al ice by 9cm every week. camp for 15 days, she starter ry day kept increasing the m achieve this remarkable pro	mined ng an in the ole to d with umber		
	(i) How m	any throws Sanjitha practic	ed on 11 th day of the camp?		1
	(ii) What w	vould be Sanjitha's throw di	stance at the end of 6 weeks?		2
			(or)		
	When v	vill she be able to achieve a	throw of 11.16 m?		
	(iii) How m	any throws did she do durir	ng the entire camp of 15 days	?	1
37.	20th July to 20th A nations host in 10	ugust 2023 and for the first	ll tournament is fixed with a n t time in the FIFA Women's V the game can be better unde te plane.	Vorld Cup's history, two	

	G G G G G G G G G G G G G G G G G G G					
	(i) At an instance, the midfielders and forward formed a parallelogram. Find the					
	position of the central midfielder (D) if the position of other players who formed					
	the parallelogram are :- A(1,2), B(4,3) and C(6,6)					
	(ii) Check if the Goal keeper G(-3,5), Sweeper H(3,1) and Wing-back K(0,3) fall on a 2					
	same straight line.					
	[or]					
	Check if the Full-back J(5,-3) and centre-back I(-4,6) are equidistant from					
	forward C(0,1) and if C is the mid-point of IJ.					
	 (iii) If Defensive midfielder A(1,4), Attacking midfielder B(2,-3) and Striker E(a,b) lie on 1 the same straight line and B is equidistant from A and E, find the position of E. 					
38.	One evening, Kaushik was in a park. Children were playing cricket. Birds were singing on a nearby tree of height 80m. He observed a bird on the tree at an angle of elevation of 45°.					
	When a sixer was hit, a ball flew through the tree frightening the bird to fly away. In 2					
	seconds, he observed the bird flying at the same height at an angle of elevation of 30° and the ball flying towards him at the same height at an angle of elevation of 60°.					

	Ball Bird Bird Height 80 m G B B C C C C C C C C C C C C C C C C C	
(i)	At what distance from the foot of the tree was he observing the bird sitting on the	1
	tree?	
(ii)	How far did the bird fly in the mentioned time?	2
	(or) After hitting the tree, how far did the ball travel in the sky when Kaushik saw the ball?	
(iii)	What is the speed of the bird in m/min if it had flown $20(\sqrt{3} + 1)$ m?	1