SUMMATIVE ASSESSMENT

Class - IX

Mathematics

Time allowed: 3 hours (Maximum Marks: 90)

General Instructions:

1. All question are compulsory.
2. The question paper consists of 31 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

Section -A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 question of 4 marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

Section A

Question numbers 1 to 4 carry 1 mark each:
Q. 1 If $125^{x} \frac{25}{5^{x}}=$ find x.
Q. 2 Find the value of $\left(\frac{2}{3}\right)$ for $\mathrm{p}(\mathrm{y})=2 \mathrm{y}^{3}-\mathrm{y}^{2}-13 \mathrm{y}-6$.
Q. 3 Do the points lie in the same quadrant? (6,-6) and ($-6,6$).
Q. 4 Find complementary angle of 35^{0}

Section B

Question numbers 5 to 10 carry 2 marks each:
Q. 5 Without actually calculating the cubes, Find the value of $45^{3}-25^{3}-20^{3}$.
Q. 6 If the area of an equilateral triangle is $\sqrt[16]{3} \mathrm{~cm}^{2}$ The Find perimeter.
Q. 7 Angles of a triangle are in the ration 3:4:5. Find largest angle of the triangle.

Q. $8 \mathrm{AB}=\mathrm{BC}$ and $\mathrm{BP}-\mathrm{BQ}$ Show that $\mathrm{AP}=\mathrm{CQ}$

Q. 9 Plot the points (2,-2), (-4,4) and join them does the line pass through origin.
Q. 10 Find a rational and irrational no. between $\sqrt{2}$ and $\sqrt{3}$.

Section C

Question numbers 11 to 20 carry 3 marks each:
Q. 11 Express $0.12 \overline{3}$ in the form of $\frac{p}{q}$
Q. 12 Find the area of triangular park whose sides are of length $120 \mathrm{~m}, 80 \mathrm{~m}$ and 50 m .
Q. 13 If ($3 x-2$) is a factor of $3 x^{3}+x^{2}-20 x+12$. Find other factors.
Q. 14 If AB | | CD. Determine x .

Q. 15 If two lines intersect each other then prove that vertically opposite angles are equal.
Q. 16 If a line 1 is the bisector of $\angle \mathrm{A}$, then find OQ .

Q. 17 Mr. Saxena has a rectangular plot of land $A B C D$ which he decided to donate to his society for the organization of fitness campaign like yoga, mediation etc. the co ordinates of three vertices of plot are $\mathrm{A}(-2,-5), \mathrm{B}(6,-5)$ and $(6,-1)$. Plot these points find co-ordinates of fourth vertex.
Which value does Mr. Saxena possess?
Q. 18 find product using suitable identity $\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{4}+\frac{1}{x^{4}}\right)$
Q. 19 If $\mathrm{AB}||C D, C D|| E F$ and $x: y=3: 2$ find Z.

Q. 20 ABC is an isosceles Δ has points D and E on BC such that $\mathrm{BE}=\mathrm{CD}$ Show that $\mathrm{AD}=\mathrm{AE}$.

Section D

Questions numbers 21 to 31 carry 4 marks each:
Q. 21 Simplify : $\frac{\sqrt[2]{6}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt[6]{2}}{\sqrt{6}+\sqrt{3}}-\frac{\sqrt[8]{3}}{\sqrt{6}+\sqrt{2}}$
Q. 22 The volume of cuboid is polynomial. $P(x)=4 x^{3}+20 x^{2}+33 x+18$ find possible expression for dimension of the cuboid.
Q. 23 Factorise: $\mathrm{x}^{12}-1$
Q. 24 Prove that angles opposite to equal sides of a triangle are equal

Q. 25 Find ($\mathrm{a}=\mathrm{b}$)
Q. $26 \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$ Show that $\mathrm{BC}=\mathrm{DE}$
Q. 27 If $x^{3}+a x^{2}+b x+6$ has $(x-2)$ has factor and leaves remainder 3 when divided by (x $-3)$. Find the values of a and b.

Q. 28 T is a point on side QR of $\triangle \mathrm{PQR}$ and S is a exterior point such that $\mathrm{RT}=\mathrm{ST}$. Prove that $P Q+P R>Q S$
Q. $29<1=<3,<2=<4,<3=4$ Write the relation between <1 and <2 Using a Euclid's axiom

Q. 30 Locate $\sqrt{3}$ on a number line.
Q. 31 If $x+y+z=10$ and $x^{2}+y^{2}+z^{2}=40$ Find $x y+y z+z x$.

