ईथर का नामकरण , बनाने की विधियाँ , भौतिक गुण , रासायनिक गुण

ईथर का नामकरण:

CH₃-CH₂-O-CH₂-CH₂-CH₃ (1-ethoxy propane)

CH₃-CH₂-O-C₆H₅ (ethoxy benzene) (फेनिटोल)

C₆H₅-O-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂ (1-phenoxy heptane)

ईथर बनाने की विधियाँ:

1. जब एथिल एल्कोहल की क्रिया सान्द्र ${
m H_2SO_4}$ के साथ ${
m 413k}$ ताप पर की जाती है। डाई एथिल ईथर बनता है।

क्रियाविधि:

यह क्रिया SN2 क्रियाविधि से होती है।

कमियाँ :

इस विधि द्वारा सम्मित ईथर ही बनाये जा सकते है , असममित ईथर नहीं , क्योंकि असममित ईथर के साथ साथ अन्य ईथर भी बनते है जिससे इनका पृथक्करण आसानी से नहीं होता।

उपरोक्त क्रिया में 20 अथवा 30 एल्कोहल लेने पर मुख्य पदार्थ एल्कीन बनता है न की ईथर।

क्योंकि 3° एल्कोहल में प्रतिस्थापन अभिक्रिया की तुलना में विलोपन अभिक्रिया सुगमता से होती है (3° कार्बोकैटायन के अधिक स्थायित्व के कारण)

विलियम सन संश्लेषण:

जब सोडियम एल्कोहल की क्रिया एल्किल हैलाइड से की जाती है तो ईथर बनते है।

 $R-ONa + X-R' \rightarrow NaX + R-OR'$

नोट : इस विधि द्वारा सममित व असममित ईथर बनाई जा सकती है।

 C_2H_5 -ONa + X- C_2H_5 \rightarrow NaX + $2C_2H_5O$

 C_2H_5 -ONa + X-CH₃ \rightarrow NaX + C_2H_5 -O-CH₃

नोट : एनिसोल का निर्माण निम्न प्रकार से होता है।

$$C_6H_5$$
-O-Na + X- $CH_3 \rightarrow C_6H_5$ -O- CH_3 + NaX

$$CH_3$$
-ONa + X- $C_6H_5 \rightarrow CH_3$ -O- C_6H_5 + NaX

द्वितीय क्रिया संभव नहीं है क्योंकि हैलोबेंजीन अनुनाद के कारण C-X के मध्य द्विबंध आ जाते है जिससे बंध अधिक मजबूत हो जाता है।

नोट : तृतीयक हैलाइड की क्रिया सोडियम ऐथाऑक्साइड से करने पर मुख्य पदार्थ एल्कीन बनती है।

व्याख्या :

ऐथाऑक्साइड आयन नाभिक स्नेही के साथ साथ एक प्रबल क्षार भी है। जो 3º कार्बेकिटायन में से प्रोटॉन बाहर निकाल देता है जिससे मुख्य पदार्थ एल्कीन बनता है।

भौतिक गुण:

- 1. डाई मेथिल तथा डाइएथिन गैसीय अवस्था में जबिक अधिक कार्बन वाले ईथर द्रव अवस्था में होते है।
- 2. कम कार्बन वाले ईथर जल के साथ हाइड्रोजन बंध बना लेते है इसलिए जल में विलेय हो जाते है।
- 3. ईथर में C-O-C बंध कोण 111º7' मिनट होता है जो की चतुष्फलकीय कोण 109º28' मिनट से अधिक हो क्यों कि ईथर में दो एल्किल समूह में मध्य पारस्परिक प्रतिकर्षण होता है।
- 4. एनिसोल में अनुनाद के कारण C-O bond की बंध लम्बाई कम होती है।

रासायनिक गुण:

H-X से क्रिया:

ईथर की क्रिया H-X से करने पर एल्कोहल व एल्किल हैलाइड बनते है।

$$R$$
-O-R + HX \rightarrow R-OH + RX

$$\mathrm{C_2H_5\text{-}O\text{-}C_2H_5} + \mathrm{HI} \rightarrow \mathrm{C_2H_5\text{-}OH} + \mathrm{C_2H_5\text{-}I}$$

नोट : असममित ईथर की क्रिया H-X से करने पर हैलोजन परमाणु उस एल्किल समूह से जुड़ता है जिसमे कार्बन कम होते है।

$$C_2H_5$$
-O- CH_3 + HI \rightarrow C_2H_5 -OH + CH_3 -I

नोट : जब ईथर में ऑक्सीजन से बेंजीन वलय जुडी हो तो फिनॉल अवश्य बनती है।

$$C_6H_5$$
-O- CH_3 + HI \rightarrow C_6H_5 -OH + CH_3 -I

$$CH_3$$
-O- C_6H_5 + HI \rightarrow XXXXX

द्वितीय क्रिया सम्भव नहीं है क्योंकि अनुनाद के कारण C_6H_5 -O बंध में द्विबंध गुण आ जाते है जिससे बंध अधिक मजबूत हो जाता है।

नोट : यदि ईथर में ऑक्सीजन से तृतीय एल्किल समूह जुड़ा हो तो 3º हैलाइड अवश्य बनते है।

प्रश्न : एनिसोल में इलेक्ट्रॉन स्नेही प्रतिस्थापन अभिक्रिया O व P पर होती है क्यों ?

उत्तर : ऐनिसोल में +R प्रभाव के कारण O व P पर इलेक्ट्रॉन का घनत्व अधिक होता है जिससे electron स्नेही (+E) O व P पर प्रहार करता है।