Important Questions For Class 10 Maths - Chapter 10 Circles

Short Answer Type Questions

Q.1: How many tangents can be drawn from the external point to a circle?

Answer: Two tangents can be drawn from the external point to a circle.

Q.2: Given: A triangle OAB which is an isosceles triangle and AB is tangent to the circle with centre O. Find the measure of ∠OAB.

Answer: The measure of ∠OAB in the given isosceles triangle OAB will be 45 degrees.

Q.3: What should be the angle between the two tangents which are drawn at the end of two radii and are inclined at an angle of 45 degrees?

Answer: The angle between them shall be 135 degrees.

Q.4: Given a right triangle PQR which is right-angled at Q. QR = 12 cm, PQ = 5 cm. The radius of the circle which is inscribed in triangle PQR will be?

Answer: The radius of the circle will be 2 cm.

Q.5: Define Tangent and Secant.

Answer: A tangent is a line which meets the circle only at one point.

A secant is a line which meets the circle at two points while intersecting it. These two points are always distinct.

Q.6: What is a circle?

Answer: If we collect all the points given on a plane and are at a constant distance, we will get a circle. The constant distance is the radius and the fixed point will be the centre of the circle.

Long Answer Type Questions

Q.1: From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. Find the radius of the circle.

Solution:

First, draw a perpendicular from the centre O of the triangle to a point P on the circle which is touching the tangent. This line will be perpendicular to the tangent of the circle.

So, OP is perpendicular to PQ i.e. OP \perp PQ

From the above figure, it is also seen that $\triangle OPQ$ is a right-angled triangle.

It is given that

OQ = 25 cm and PQ = 24 cm

By using Pythagorean theorem in \triangle OPQ,

$$OQ^{2} = OP^{2} + PQ^{2}$$

=> (25)² = OP² + (24)²
=> OP² = 625 - 576

 $=> OP^2 = 49$

 \Rightarrow OP = 7 cm

Therefore, the radius of the given circle is 7 cm.

Q. 2: Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution:

First, draw a circle and connect two points A and B such that AB becomes the diameter of the circle. Now, draw two tangents PQ and RS at points A and B respectively.

Now, both radii i.e. AO and OB are perpendicular to the tangents.

So, OB is perpendicular to RS and OA perpendicular to PQ

So, $\angle OAP = \angle OAQ = \angle OBR = \angle OBS = 90^{\circ}$

From the above figure, angles OBR and OAQ are alternate interior angles.

Also, $\angle OBR = \angle OAQ$ and $\angle OBS = \angle OAP$ {since they are also alternate interior angles}

So, it can be said that line PQ and the line RS will be parallel to each other.

Hence Proved.

Q. 3: A quadrilateral ABCD is drawn to circumscribe a circle as shown in the figure. Prove that AB + CD = AD + BC

Solution:

From this figure,

(i) DR = DS

(ii) BP = BQ

(iii) AP = AS

(iv) CR = CQ

Since they are tangents on the circle from points D, B, A, and C respectively.

Now, adding the LHS and RHS of the above equations we get,

DR + BP + AP + CR = DS + BQ + AS + CQ

By rearranging them we get,

(DR + CR) + (BP + AP) = (CQ + BQ) + (DS + AS)

By simplifying,

AD + BC = CD + AB

Q. 4: Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Solution:

Draw two concentric circles with the centre O. Now, draw a chord AB in the larger circle which touches the smaller circle at a point P as shown in the figure below.

From the above diagram, AB is tangent to the smaller circle to point P.

 $\therefore OP \perp AB$

Using Pythagoras theorem in triangle OPA,

$$OA^{2} = AP^{2} + OP^{2}$$

=> $5^{2} = AP^{2} + 3^{2}$
=> $AP^{2} = 25 - 9 = 16$
=> $AP = 4$

 $\mathsf{OP} \perp \mathsf{AB}$

Since the perpendicular from the centre of the circle bisects the chord, AP will be equal to PB

So, $AB = 2AP = 2 \times 4 = 8$ cm

Hence, the length of the chord of the larger circle is 8 cm.

Q. 5: Let s denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively, prove that BD = s - b.

Solution:

According to the question,

A triangle ABC with BC = a, CA = b and AB = c. Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semi perimeter of the triangle

To Prove: BD = s - b

Proof:

According to the question,

We have,

Semi Perimeter = s

Perimeter = 2s

2s = AB + BC + AC....[1]

As we know,

Tangents drawn from an external point to a circle are equal

So we have

AF = AE... [2] [Tangents from point A]

BF = BD[3] [Tangents From point B]

CD = CE.... [4] [Tangents From point C]

Adding [2], [3], and [4],

AF + BF + CD = AE + BD + CE

AB + CD = AC + BD

Adding BD both side,

AB + CD + BD = AC + BD + BDAB + BC - AC = 2BDAB + BC + AC - AC - AC = 2BD2s - 2AC = 2BD [From (1)]2BD = 2s - 2b [as AC = b]BD = s - b

Hence proved.

Q.6: In the figure, two tangents TP and TQ are drawn to a circle with centre O from an external point T, prove that $\angle PTQ = 2OPQ$.

Solution:

Given that two tangents TP and TQ are drawn to a circle with centre O from an external point T

Let $\angle PTQ = \theta$.

Now, by using the theorem "the lengths of tangents drawn from an external point to a circle are equal", we can say TP = TQ. So, TPQ is an isosceles triangle.

Thus,

 $\angle TPQ = \angle TQP = \frac{1}{2} (180^{\circ} - \theta) = 90^{\circ} - (\frac{1}{2}) \theta$

By using the theorem, "the tangent at any point of a circle is perpendicular to the radius through the point of contact", we can say $\angle OPT = 90^{\circ}$

Therefore,

 $\angle OPQ = \angle OPT - \angle TPQ = 90^{\circ} - [90^{\circ} - (\frac{1}{2})\theta]$ $\angle OPQ = (\frac{1}{2})\theta$ $\angle OPQ = (\frac{1}{2}) \angle PTQ$ $\Rightarrow \angle PTQ = 2 \angle OPQ.$

Hence proved.

Q.7: Prove that the lengths of tangents drawn from an external point to a circle are equal.

Solution:

Consider a circle with the centre "O" and P is the point that lies outside the circle. Hence, the two tangents formed are PQ and PR.

We need to prove: PQ = PR.

To prove the tangent PQ is equal to PR, join OP, OQ and OR. Hence, \angle OQP and \angle ORP are the right angles.

Therefore, OQ = OR (Radii)

OP = OP (Common side)

By using the RHS rule, we can say, $\triangle \text{ OQP} \cong \triangle \text{ ORP}$.

Thus, by using the CPCT rule, the tangent PQ = PR.

Hence proved.

Q.8: In the figure, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r. If OP = 2r, show that $\angle OTS = \angle OST = 30^{\circ}$.

Solution:

Given that from an external point P, Two tangents PT and PS are drawn to a circle with center O and radius r and OP = 2r

OS = OT {radii of same circle}

 $\angle OTS = \angle OST$ {angles opposite to equal sides are equal}(i)

A tangent drawn at a point on a circle is perpendicular to the radius through point of contact.

OT \perp TP and OS \perp SP

 $\angle OSP = 90^{\circ}$

 $\angle OST + \angle PST = 90^{\circ}$

 $\angle PST = 90^{\circ} - \angle OST....(ii)$

In triangle PTS

PT = PS {tangents drawn from an external point to a circle are equal}

 $\angle PST = \angle PTS = 90^{\circ} - \angle OST \{\text{from (ii)}\}$

```
\angle PTS + \angle PST + \angle SPT = 180^{\circ} {angle sum property of a triangle}
90^{\circ} - \angle OST + 90^{\circ} - \angle OST + \angle SPT = 180^{\circ}
\angleSPT = 2\angleOST....(iii)
In \triangle OTP, OT \perp TP
sin(\angle OPT) = OT/OP = r/2r = 1/2
sin(\angle OPT) = sin 30^{\circ}
\angle OPT = 30^{\circ}....(iv)
Similarly,
In \triangle OSP,
\angle OPS = 30^{\circ}...(v)
Adding (iv) and (v),
\angle OPT + \angle OPS = 30^{\circ} + 30^{\circ}
\angleSPT = 60°
Now substituting this value in (iii),
\angleSPT = 2\angleOST
60^{\circ} = 2 \angle OST
```

∠OST = 30°....(vi)

From (i) and (vi),

 $\angle OST = \angle OTS = 30^{\circ}$

Q.9: In the figure, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If \angle PRQ = 120°, then prove that OR = PR + RQ.

Solution:

Given, two tangents RQ and RP are drawn from an external point R to the circle with centre O. \angle PRQ = 120°

Join OP, OQ and OR.

 $\angle PRQ = \angle QRO = 120^{\circ}/2 = 60^{\circ}$

RQ and RP are the tangent to the circle.

OQ and OP are radii

 $\text{OQ} \perp \text{QR} \text{ and } \text{OP} \perp \text{PR}$

Form right $\triangle OPR$,

 $\angle POR = 180^{\circ} - (90^{\circ} + 60^{\circ}) = 30^{\circ}$

and $\angle QOR = 30^{\circ}$

cos a = PR/OR (suppose 'a' be the angle)

 $\cos 60^{\circ} = PR/OR$

1/2 = PR/OR

OR = 2 PR

Again from right $\triangle OQR$,

OR = 2 QR

From both the results, we have

2 PR + 2 QR = 2OR

or OR = PR + RQ

Hence Proved.

Q.10: Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the endpoints of the arc.

Solution:

Let mid-point of an arc AMB be M and TMT' be the tangent to the circle.

Now, join AB, AM and MB.

Since, arc AM = arc MB

 \Rightarrow Chord AM = Chord MB

In ΔAMB , AM = MB

 $\Rightarrow \angle MAB = \angle MBA....(i)$ {angles corresponding to the equal sides are equal}

Since, TMT' is a tangent line.

 $\angle AMT = \angle MBA$ {angles in alternate segment are equal}

Thus, $\angle AMT = \angle MAB \{ \text{from (i)} \}$

But ∠AMT and ∠MAB are alternate angles, which is possible only when AB || TMT'

Therefore, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the endpoints of the arc.

Hence proved.