Q.1: Represent the following situations in the form of quadratic equations:

(i) The area of a rectangular plot is 528 m². The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.

(ii) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. What is the speed of the train?

Solution:

(i) Let us consider, The breadth of the rectangular plot is x m.

Thus, the length of the plot = (2x + 1) m

As we know,

Area of rectangle = length × breadth = 528 m^2 Putting the value of length and breadth of the plot in the formula, we get,

 $(2x + 1) \times x = 528$ $\Rightarrow 2x^2 + x = 528$

 $\Rightarrow 2x^2 + x - 528 = 0$

Hence, $2x^2 + x - 528 = 0$, is the required equation which represents the given situation.

(ii) Let us consider, speed of train = x km/hAnd Time taken to travel 480 km = 480 (x) km/h As per second situation, the speed of train = (x - 8) km/h

As given, the train will take 3 hours more to cover the same distance. Therefore, time taken to travel 480 km = (480/x) + 3 km/h As we know, Speed × Time = Distance Therefore, (x - 8)[(480/x) + 3] = 480

$$\Rightarrow 480 + 3x - (3840/x) - 24 = 480$$

$$\Rightarrow 3x - (3840/x) = 24$$

$$\Rightarrow 3x^{2} - 24x - 3840 = 0$$

$$\Rightarrow x^{2} - 8x - 1280 = 0$$

Hence, $x^2 - 8x - 1280 = 0$ is the required representation of the problem mathematically.

Q.2: Find the roots of quadratic equations by factorisation:

(i) $\sqrt{2} x^2 + 7x + 5\sqrt{2} = 0$ (ii) $100x^2 - 20x + 1 = 0$ Solution: (i) $\sqrt{2} x^2 + 7x + 5\sqrt{2} = 0$ Considering the L.H.S. first, $\Rightarrow \sqrt{2} x^2 + 5x + 2x + 5\sqrt{2}$ $\Rightarrow x (\sqrt{2x+5}) + \sqrt{2}(\sqrt{2x+5}) = (\sqrt{2x+5})(x+\sqrt{2})$ The roots of this equation, $\sqrt{2} x^2 + 7x + 5\sqrt{2}=0$ are the values of x for which $(\sqrt{2}x + 5)(x + 5)(x$ $\sqrt{2} = 0$ Therefore, $\sqrt{2x} + 5 = 0$ or $x + \sqrt{2} = 0$ \Rightarrow x = -5/ $\sqrt{2}$ or x = - $\sqrt{2}$ (ii) Given, $100x^2 - 20x + 1=0$ Considering the L.H.S. first, $\Rightarrow 100x^2 - 10x - 10x + 1$ \Rightarrow 10x(10x - 1) -1(10x - 1) $\Rightarrow (10X - 1)^2$ The roots of this equation, $100x^2 - 20x + 1=0$, are the values of x for which $(10x - 1)^2 = 0$ Therefore,

(10X-1)=0

or (10x - 1) = 0 $\Rightarrow x = 1/10 \text{ or } x = 1/10$

Q.3: Find two consecutive positive integers, the sum of whose squares is 365.

Solution:

Let us say, the two consecutive positive integers be x and x + 1.

Therefore, as per the given statement,

 $x^{2} + (x + 1)^{2} = 365$ $\Rightarrow x^{2} + x^{2} + 1 + 2x = 365$ $\Rightarrow 2x^{2} + 2x - 364 = 0$ $\Rightarrow x^{2} + x - 182 = 0$ $\Rightarrow x^{2} + 14x - 13x - 182 = 0$ $\Rightarrow x(x + 14) - 13(x + 14) = 0$ $\Rightarrow (x + 14)(x - 13) = 0$ Thus, either, x + 14 = 0 or x - 13 = 0, $\Rightarrow x = -14$ or x = 13since, the integers are positive, so x can be 13, only.

So, x + 1 = 13 + 1 = 14Therefore, the two consecutive positive integers will be 13 and 14.

Q.4: Find the roots of the following quadratic equations, if they exist, by the method of completing the square:

(i) $2x^2 - 7x + 3 = 0$

(ii) $2x^2 + x - 4 = 0$

Solution:

(i) $2x^2 - 7x + 3 = 0$ $\Rightarrow 2x^2 - 7x = -3$ Dividing by 2 on both sides, we get \Rightarrow x²-7x/2 = -3/2 \Rightarrow x² - 2 × x × 7/4 = -3/2 On adding $(7/4)^2$ to both sides of above equation, we get \Rightarrow (x)² - 2 × x × 7/4 + (7/4)² = (7/4)² - (3/2) $\Rightarrow (x - 7/4)^2 = (49/16) - (3/2)$ $\Rightarrow (x - 7/4)^2 = 25/16$ \Rightarrow (x - 7/4) = ± 5/4 \Rightarrow x = 7/4 ± 5/4 \Rightarrow x = 7/4 + 5/4 or x = 7/4 - 5/4 \Rightarrow x =12/4 or x =2/4 \Rightarrow x = 3 or 1/2 (ii) $2x^2 + x - 4 = 0$ $\Rightarrow 2x^2 + x = 4$ Dividing both sides of the above equation by 2, we get \Rightarrow x² + x/2 = 2 \Rightarrow (x)² + 2 × x × 1/4 = 2 Now on adding $(1/4)^2$ to both sides of the equation, we get,

 $\Rightarrow (x)^{2} + 2 \times x \times 1/4 + (1/4)^{2} = 2 + (1/4)^{2}$ $\Rightarrow (x + 1/4)^{2} = 33/16$ $\Rightarrow x + 1/4 = \pm \sqrt{33/4}$

 $\Rightarrow x = \pm \sqrt{33/4} - 1/4$ $\Rightarrow x = \pm \sqrt{33} - 1/4$

Therefore, either $x = \sqrt{33-1/4}$ or $x = -\sqrt{33-1/4}$.

Q.5: The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

Solution:

Let us say, the shorter side of the rectangle be x m. Then, larger side of the rectangle = (x + 30) m Diagonal of the rectangle = $\sqrt{[x^2+(x+30)^2]}$ As given, the length of the diagonal is = x + 60 m $\Rightarrow x^2 + (x + 30)^2 = (x + 60)^2$ $\Rightarrow x^2 + x^2 + 900 + 60x = x^2 + 3600 + 120x$ $\Rightarrow x^2 - 60x - 2700 = 0$ $\Rightarrow x^2 - 90x + 30x - 2700 = 0$ $\Rightarrow x(x - 90) + 30(x - 90)$ $\Rightarrow (x - 90)(x + 30) = 0$ $\Rightarrow x = 90, -30$

Q.6 : Solve the quadratic equation $2x^2 - 7x + 3 = 0$ by using quadratic formula.

Solution:

 $2x^2 - 7x + 3 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we get,

a = 2, b = -7 and c = 3 By using quadratic formula, we get,

```
x = [-b \pm \sqrt{(b^2 - 4ac)}]/2a
```

```
\Rightarrow x = [7 \pm \sqrt{(49 - 24)}]/4\Rightarrow x = [7 \pm \sqrt{25}]/4\Rightarrow x = [7 \pm 5]/4
```

Therefore,

 $\Rightarrow x = 7+5/4 \text{ or } x = 7-5/4$ $\Rightarrow x = 12/4 \text{ or } 2/4$ $\therefore x = 3 \text{ or } \frac{1}{2}$

Q.7: The sum of the areas of two squares is 468 m². If the difference of their perimeters is 24 m, find the sides of the two squares.

Solution:

Sum of the areas of two squares is 468 m². \therefore x² + y² = 468(1) [\therefore area of square = side²] \rightarrow The difference of their perimeters is 24 m. $\therefore 4x - 4y = 24 [$ \therefore Perimeter of square = $4 \times side$] $\Rightarrow 4(x - y) = 24$ \Rightarrow x - y = 24/4 \Rightarrow x - y = 6 $\therefore y = x - 6$ (2) From equation (1) and (2), $\therefore x^2 + (x - 6)^2 = 468$ $\Rightarrow x^2 + x^2 - 12x + 36 = 468$ $\Rightarrow 2x^2 - 12x + 36 - 468 = 0$ $\Rightarrow 2x^2 - 12x - 432 = 0$ $\Rightarrow 2(x^2 - 6x - 216) = 0$ \Rightarrow x² - 6x - 216 = 0 $\Rightarrow x^2 - 18x + 12x - 216 = 0$ \Rightarrow x(x - 18) + 12(x - 18) = 0 \Rightarrow (x + 12) (x - 18) = 0 \Rightarrow x + 12 = 0 and x - 18 = 0 \Rightarrow x = -12m [rejected] and x = 18m . . x = 18 m Put the value of 'x' in equation (2), $\therefore v = x - 6$ \Rightarrow y = 18 - 6 ... y = 12 m Hence, sides of two squares are 18m and 12m respectively.

Q.8: Find the values of k for each of the following quadratic equations, so that they have two equal roots.

(i) $2x^2 + kx + 3 = 0$ (ii) kx (x - 2) + 6 = 0

Solution:

(i) $2x^2 + kx + 3 = 0$

Comparing the given equation with $ax^2 + bx + c = 0$, we get,

a = 2, b = k and c = 3

As we know, Discriminant = $b^2 - 4ac$

 $=(k)^{2}-4(2)(3)$

 $= k^2 - 24$

For equal roots, we know,

Discriminant = 0 $k^2 - 24 = 0$ $k^2 = 24$ $k = \pm \sqrt{24} = \pm 2\sqrt{6}$ (ii) kx(x-2) + 6 = 0or $kx^2 - 2kx + 6 = 0$ Comparing the given equation with $ax^2 + bx + c = 0$, we get a = k, b = -2k and c = 6We know, Discriminant = $b^2 - 4ac$ $= (-2k)^2 - 4(k)(6)$ $= 4k^2 - 24k$ For equal roots, we know, $b^2 - 4ac = 0$ $4k^2 - 24k = 0$ 4k(k-6) = 0Either 4k = 0 or k = 6 = 0k = 0 or k = 6

However, if k = 0, then the equation will not have the terms 'x²' and 'x'.

Therefore, if this equation has two equal roots, k should be 6 only.

Q.9: Is it possible to design a rectangular park of perimeter 80 and area 400 sq.m.? If so find its length and breadth.

Solution:

Let the length and breadth of the park be L and B.

Perimeter of the rectangular park = 2(L + B) = 80

So, L + B = 40

Or, B = 40 - L

Area of the rectangular park = $L \times B = L(40 - L) = 40L - L^2 = 400$

 $L^2 - 40 L + 400 = 0$,

which is a quadratic equation.

Comparing the equation with $ax^2 + bx + c = 0$, we get

a = 1, b = -40, c = 400

Since, Discriminant = $b^2 - 4ac$

 $=>(-40)^2-4\times400$

=> 1600 - 1600

= 0

Thus, $b^2 - 4ac = 0$

Therefore, this equation has equal real roots. Hence, the situation is possible.

Root of the equation,

L = -b/2a

L = (40)/2(1) = 40/2 = 20

Therefore, length of rectangular park, L = 20 m

And breadth of the park, B = 40 - L = 40 - 20 = 20 m.

Q.10: Find the discriminant of the equation $3x^2 - 2x + 1/3 = 0$ and hence find the nature of its roots. Find them, if they are real. Solution:

Given,

 $3x^2 - 2x + 1/3 = 0$

Here, a = 3, b = -2 and c = 1/3Since, Discriminant = $b^2 - 4ac$

= $(-2)2 - 4 \times 3 \times 1/3$ = 4 - 4 = 0. Hence, the given quadratic equation has two equal real roots. The roots are -b/2a and -b/2a.

2/6 and 2/6

1/3, 1/3

Q.11: In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced by 200 km/hr and the time of flight increased by 30 minutes. Find the original duration of the flight.

Solution:

Let the duration of the flight be x hours.

According to the given,

(600/x) - [600/(x + 1/2) = 200 (600/x) - [1200/(2x + 1)] = 200 [600(2x + 1) - 1200x] / [x(2x + 1)] = 200 (1200x + 600 - 1200x) / [x(2x + 1)] = 200 600 = 200x(2x + 1) x(2x + 1) = 3 $2x^{2} + x - 3 = 0$ $2x^{2} + 3x - 2x - 3 = 0$ x(2x + 3) - 1(2x + 3) = 0 (2x + 3)(x - 1) = 0 2x + 3 = 0, x - 1 = 0 x = -3/2, x = 1Time cannot be negative.

Therefore, x = 1

Hence, the original duration of the flight is 1 hr.

Q.12: If x = 3 is one root of the quadratic equation $x^2 - 2kx - 6 = 0$, then find the value of k.

Solution:

Given that x = 3 is one root of the quadratic equation $x^2 - 2kx - 6 = 0$.

$$\Rightarrow (3)^2 - 2k(3) - 6 = 0$$

 $\Rightarrow 9 - 6k - 6 = 0$ $\Rightarrow 3 - 6k = 0$ $\Rightarrow 6k = 3$ $\Rightarrow k = 1/2$

Therefore, the value of k is $\frac{1}{2}$.

Q.13: Find the value of p, for which one root of the quadratic equation $px^2 - 14x + 8 = 0$ is 6 times the other.

Solution:

Given quadratic equation is:

 $px^2 - 14x + 8 = 0$

Let α and 6α be the roots of the given quadratic equation.

Sum of the roots = -coefficient of x/coefficient of x^2

```
\alpha+6\alpha=-(-14)/p
```

 $7\alpha = 14/p$

 $\alpha = 2/p....(i)$

Product of roots = constant term/coefficient of x^2

 $(\alpha)(6\alpha) = 8/p$

 $6\alpha^2 = 8/p$

Substituting $\alpha = 2/p$ from (i),

$$6 \times (2/p)^2 = 8/p$$

 $24/p^2 = 8/p$

Therefore, the value of p is 3.

Q.14: Solve for x: $[1/(x + 1)] + [3/(5x + 1)] = 5/(x + 4); x \neq -1, -\frac{1}{5}, -4$

Solution:

Given,

$$[1/(x + 1)] + [3/(5x + 1)] = 5/(x + 4); x \neq -1, -\frac{1}{5}, -4$$

Let us take the LCM of denominators and cross multiply the terms.

[1(5x + 1) + 3(x + 1)]/[(x + 1)(5x + 1)] = 5/(x + 4) [5x + 1 + 3x + 3]/[5x² + x + 5x + 1] = 5/(x + 4) (8x + 4)(x + 4) = 5(5x² + 6x + 1) 8x² + 32x + 4x + 16 = 25x² + 30x + 5 25x² + 30x + 5 - 8x² - 36x - 16 = 0 17x² - 6x - 11 = 0 17x² - 6x - 11 = 0 17x² - 17x + 11x - 11 = 0 17x(x - 1) + 11(x - 1) = 0 (17x + 11)(x - 1) = 0 17x + 11 = 0, x - 1 = 0x = -11/17, x = 1

Q.15: If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, find the value of k.

Solution:

Given that -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$.

 $\Rightarrow 2(-5)^{2} + p(-5) - 15 = 0$ $\Rightarrow 50 - 5p - 15 = 0$ $\Rightarrow 35 - 5p = 0$ $\Rightarrow 5p = 35$ $\Rightarrow p = 7$ Also, the quadratic equation

Also, the quadratic equation $p(x^2 + x) + k = 0$ has equal roots.

Substituting p = 7 in $p(x^2 + x) + k = 0$,

$$7(x^{2} + x) + k = 0$$

 $7x^{2} + 7x + k = 0$

Comparing with the standard form $ax^2 + bx + c = 0$,

a = 7, b = 7, c = k

For equal roots, discriminant is equal to 0.

 $b^{2} - 4ac = 0$ (7)² - 4(7)(k) = 0 49 - 28k = 0 28k = 49

k = 7/4

Therefore, the value of k is 7/4.