Important Questions Class 11 Maths Chapter 2
 Relations and Functions

Important Questions \& Answers For Class 11 Maths Chapter 2 Relations and Functions

Q.1: Write the range of a Signum function.

Solution:

The real function $f: R \rightarrow R$ defined by
is called the signum function. Domain of $\mathrm{f}=$ R, Range of $f=\{1,0,-1\}$
Q.2: The Cartesian product $A \times A$ has 9 elements among which are found ($1,0)$ and $(0,1)$. Find the set A and the remaining elements of $A \times A$.

$$
f(x)=\left\{\begin{array}{cc}
1, & \text { if } x>0 \\
0, & \text { if } x=0 \\
-1, & \text { if } x<0
\end{array}\right.
$$

Solution:
We know that,
If $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$
From the given,
$n(A \times A)=9$
$n(A) \times n(A)=9$,
$\mathrm{n}(\mathrm{A})=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $\mathrm{A} \times \mathrm{A}$.
Therefore, $\mathrm{A} \times \mathrm{A}=\{(\mathrm{a}, \mathrm{a}): \mathrm{a} \in \mathrm{A}\}$
Hence, $-1,0,1$ are the elemets of A .
From (i) and (ii),
$A=\{-1,0,1\}$
The remaining elements of set $\mathrm{A} \times \mathrm{A}$ are $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0)$ and $(1$, 1).
Q.3: Express the function $f: A-R . f(x)=x^{2}-1$. where $A=\{-4,0,1,4)$ as a set of ordered pairs.

Solution:

Given,
$A=\{-4,0,1,4\}$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-1$
$f(-4)=(-4)^{2}-1=16-1=15$
$\mathrm{f}(\mathrm{o})=(\mathrm{o})^{2}-1=-1$
$\mathrm{f}(1)=(1)^{2}-1=0$
$f(4)=(4)^{2}-1=16-1=15$
Therefore, the set of ordered pairs $=\{(-4,15),(0,-1),(1,0),(4,15)\}$
Q.4: Assume that $A=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $R=\{(x$, $y): 3 x-y=0$, such that $x, y \in A\}$. Determine and write down its range, domain, and codomain.

Solution:

It is given that the relation R from A to A is given by $R=\{(x, y): 3 x-y=0$, where $x, y \in$ A\}.

It means that $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 3 \mathrm{x}=\mathrm{y}$, where $\mathrm{x}, \mathrm{y} \in \mathrm{A}\}$
Hence, $R=\{(1,3),(2,6),(3,9),(4,12)\}$
We know that the domain of R is defined as the set of all first elements of the ordered pairs in the given relation.

Hence, the domain of $\mathrm{R}=\{1,2,3,4\}$
To determine the codomain, we know that the entire set A is the codomain of the relation R.

Therefore, the codomain of $\mathrm{R}=\mathrm{A}=\{1,2,3, \ldots, 14\}$
As it is known that, the range of R is defined as the set of all second elements in the relation ordered pair.

Hence, the Range of R is given by $=\{3,6,9,12\}$
Q.5: Let $f(x)=x^{2}$ and $g(x)=2 x+1$ be two real functions. Find

$$
(f+g)(x),(f-g)(x),(f g)(x),(f / g)(x)
$$

Solution:

Given,
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+1$
$(f+g)(x)=x^{2}+2 x+1$
$(f-g)(x)=x^{2}-(2 x+1)=x^{2}-2 x-1$
$(\mathrm{fg})(\mathrm{x})=\mathrm{x}^{2}(2 \mathrm{x}+1)=2 \mathrm{x}^{3}+\mathrm{x}^{2}$
$(f / g)(x)=x^{2} /(2 x+1), x \neq-1 / 2$
Q.6: Redefine the function: $f(x)=|x-1|-|x+6|$. Write its domain also.

Solution:

Given function is $\mathrm{f}(\mathrm{x})=|\mathrm{x}-1|-|\mathrm{x}+6|$
Redefine of the function is:
The domain of this function is R .
Q.7: The function \mathbf{f} is defined by $\quad f(x)=\left\{\begin{array}{c}-x+1+x+6, x \leq-6 \\ -x+1-x-6,-6 \leq x<1 \\ x-1-x-6, x \geq 1\end{array}\right.$

Draw the graph of $f(x)$.

Solution:

$$
=\left\{\begin{array}{c}
7, x \leq-6 \\
-2 x-5,-6 \leq x<1 \\
-7, x \geq 1
\end{array}\right.
$$

$f(x)=1-x, x<0$, this gives

$$
f(x)=\left\{\begin{array}{c}
1-x, x<0 \\
1, x=0 \\
x+1, x>0
\end{array}\right.
$$

$f(-2)=1-(-2)=3$
$f(-1)=1-(-1)=2 ;$ etc,
Also, $\mathrm{f}(1)=2, \mathrm{f}(2)=3, \mathrm{f}(3)=4, \mathrm{f}(4)=5$ and so on for $\mathrm{f}(\mathrm{x})=\mathrm{x}+1, \mathrm{x}>0$.
Thus, the graph of f is as shown in the below figure.
Q.8: Find the domain and range of the real function $f(x)=x / 1+x^{2}$.

Solution:

Given real function is $\mathrm{f}(\mathrm{x})=\mathrm{x} / 1+\mathrm{x}^{2}$.
$1+x^{2} \neq 0$
$x^{2} \neq-1$

Domain : $\mathrm{x} \in \mathrm{R}$
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$y=x / 1+x^{2}$
$\Rightarrow \mathrm{x}=\mathrm{y}\left(1+\mathrm{x}^{2}\right)$
$\Rightarrow y^{2}-x+y=0$
This is quadratic equation with real roots.
$(-1)^{2}-4(y)(y) \geq 0$
$1-4 y^{2} \geq 0$
$\Rightarrow 4 \mathrm{y}^{2} \leq 1$
$\Rightarrow y^{2} \leq 1 / 4$
$\Rightarrow-1 / 2 \leq \mathrm{y} \leq 1 / 2$
$\Rightarrow-1 / 2 \leq \mathrm{f}(\mathrm{x}) \leq 1 / 2$
Range $=[-1 / 2,1 / 2]$

