IMPORTANT QUESTIONS CLASS - 12 PHYSICS CHAPTER - 13 NUCLEI

Question 1.
Calculate the binding energy per nucleon of $\mathrm{Fe}^{56}{ }_{26}$ Given $\mathrm{m}_{\mathrm{Fe}}=55.934939 \mathrm{u}$, $m_{n}=1.008665 u$ and $m_{p}=1.007825 u$
Answer:
Number of protons Z = 26
Number of neutrons $(A-Z)=30$
Now mass defect is given by
$\Delta \mathrm{m}=\mathrm{Z} \mathrm{m} \mathrm{p}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{M}$
$\Delta \mathrm{m}=26 \times 1.007825+30 \times 1.008665-55.934939$
$=0.528461 \mathrm{u}$
Therefore binding energy
$\mathrm{BE}=\Delta \mathrm{m} \times 931 \mathrm{MeV}=0.528461 \times 931$
$=491.99 \mathrm{MeV}$
$\mathrm{BE} /$ nucleon $=491.99 / 56=8.785 \mathrm{MeV}$

Question 2.

The activity of a radioactive element drops to one-sixteenth of its initial value in 32 years. Find the mean life of the sample.
Answer:

$$
\begin{aligned}
& t=32 \text { years, } A=A_{0} / 16, \text { using } \\
& A=A_{0}\left(\frac{1}{2}\right)^{n} \text { where } n=t / T \text { we have } \\
& \frac{A_{0}}{16}=A_{0}\left(\frac{1}{2}\right)^{32 / T} \\
& \left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{32 / T}
\end{aligned}
$$

$32 / \mathrm{T}=4$ or $7=32 / 4=8$ years.
Therefore mean life of the sample is $\tau=1.447=$
$1.44 \times 8=11.52$ years.

Question 3.

A radioactive sample contains 2.2 mg of pure 116 C which has a half-life period of 1224 seconds. Calculate (i) the number of atoms present initially and (ii) the activity when 5 pg of the sample will be left.
Answer:
Mass of sample $=2.2 \mathrm{pg}$

Now 11 g of the sample contains 6.023×10^{23} nuclei, therefore the number of nuclei in 2.2
$\mathrm{mg}=2.2 \times 10^{-3} \mathrm{~g}$ are

Question 4.

The half-life of 23892 U is 4.5×10^{9} years.
Calculate the activity of 1 g sample

$$
\begin{aligned}
& 2.2 \mathrm{mg}=2.2 \times 10^{-3} \mathrm{~g} \text { are } \\
& \frac{6.023 \times 10^{23}}{11} \times 2.2 \times 10^{-3}=1.2 \times 10^{20} \\
& \text { Given } T=1224 \mathrm{~s} . \\
& \text { Number of nuclei in } 5 \mu \mathrm{~g} \\
& N=\frac{6.023 \times 10^{23}}{11} \times 5 \times 10^{-6}=2.7 \times 10^{17} \\
& A=-\lambda N=\frac{0.693}{T} \times N \\
& =\frac{0.693}{1224} \times 2.7 \times 10^{17}=1.53 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}
$$

of $\mathbf{9 2}^{238} \mathrm{U}$.
Answer:
Given $\mathrm{T}=4.5 \times 10^{9}$ years.
Number of nuclei of U in 1 g
$=\mathrm{N}=6.023 \times 1023238=2.5 \times 10^{21}$
Therefore activity

$$
\begin{aligned}
A=\lambda N= & \frac{0.693}{T} \times N=\frac{0.693}{4.5 \times 10^{9}} \times 2.5 \times 10^{21} \\
& =3.85 \times 10^{11} \mathrm{dis} \mathrm{y}^{-1}
\end{aligned}
$$

Question 5.

The decay constant for a given
radioactive sample is 0.3456 per day.
What percentage of this sample will get
decayed in a period of 4 days?
Answer:
Given $\lambda=0.3456$ day $^{-1}$
or
$\mathrm{T}_{1 / 2}=0.693 / \lambda=0.693 / 0.3456=2.894$ days, $\mathrm{t}=4$ days.
Let N be the mass left behind, then $\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda t}$
or
$\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\mathrm{O} 3456 \times 4}$
or
$\mathrm{N}=\mathrm{N}_{\mathrm{O}} \mathrm{e}^{-13824}=\mathrm{N}_{\mathrm{o}} \times 0.25$

$$
\begin{aligned}
& \frac{N_{0}-N}{N_{0}} \times 100=\frac{N_{0}-0.25 N_{0}}{N_{0}} \times 100 \\
& =75 \%
\end{aligned}
$$

Therefore the percentage of undecayed is

Question 6.

It is observed that only 6.25 \% of a given
radioactive sample is left undecayed after a
period of 16 days. What is the decay constant of this sample per day?
Answer:
Given $N / N_{o}=6.25 \%, t=16$ days, $\lambda=$?
Or
16/ $T=4$ or $T=4$ days.

$$
\frac{N}{N_{0}}=6.25 \%=\frac{1}{16}
$$

Using the relation $N=N_{0}\left(\frac{1}{2}\right)^{n}$ we have

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{16 / T} \text { or }
$$

$$
\left(\frac{1}{16}\right)=\left(\frac{1}{2}\right)^{16 / T} \text { or }\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{16 / T}
$$

Therefore $\lambda=1 / \mathrm{T}=1 / 4=0.25$ day $^{-1}$

Question 7.

A radioactive substance decays to
$1 / 32^{\text {th }}$ of its initial value in 25 days.
Calculate its half-life.
Answer:
Given $\mathrm{t}=25$ days, $\mathrm{N}=\mathrm{N}_{\mathrm{o}} / 32$, using
Or
$25 / 7=5$ or $\mathrm{T}=25 / 5=5$ days.

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{n} \text { where } n=t / T \text { we have } \\
& \frac{N_{0}}{32}=N_{0}\left(\frac{1}{2}\right)^{25 / T} \text { or }\left(\frac{1}{2}\right)^{5}=\left(\frac{1}{2}\right)^{25 / T}
\end{aligned}
$$

Question 8.
The half-life of a radioactive sample is 30 s .

Calculate

(i) the decay constant, and

Answer:
Given $T_{1} / 2=30 \mathrm{~s}, \mathrm{~N}=3 \mathrm{~N}_{\mathrm{o}} / 4, \lambda=$?, $\mathrm{t}=$?
(i) Decay constant
$\lambda=0.693 \mathrm{~T} 1 / 2=0.69330=0.0231 \mathrm{~s}^{-1}$
(ii) time taken for the sample to decay to $3 / 4$ th of its initial value.

Answer:
Using $\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda \mathrm{t}}$ we have

$$
\begin{aligned}
& \frac{3 N_{0}}{4}=N_{0} e^{-\lambda t} \text { or } \ln \frac{4}{3}=\lambda t \text { or } \\
& t=\frac{2.303 \log 1.333}{\lambda} \\
& =\frac{2.303 \log 1.333}{0.0231}=12.49 \mathrm{~s}
\end{aligned}
$$

Question 9.
The half-life of $\mathbf{1 4} \mathbf{6 C}$ is 5700 years. What does it mean?
Two radioactive nuclei X and Y initially contain an equal number of atoms. Their half-lives are 1 hour
and 2 hours respectively. Calculate the ratio of their rates of disintegration after 2 hours.
Answer:
It means that in 5700 years the number of nuclei of carbon decay to half their original value.
Given $\mathrm{N}_{\mathrm{OX}}=\mathrm{N}_{\mathrm{OY}}, \mathrm{T}_{\mathrm{X}}=1 \mathrm{~h}, \mathrm{~T}_{\mathrm{Y}}=2 \mathrm{~h}$, therefore
$\lambda X \lambda Y=21=2$
Now after 2 hours X will reduce to one- fourth and Y will reduce to half their original value. If activities at $t=2 h$ are R_{x} and R_{y} respectively, then

Thus their rate of disintegration after 2 hours is the same.

$$
\frac{R_{X}}{R_{Y}}=\frac{\lambda_{\mathrm{X}}}{\lambda_{\mathrm{Y}}} \times \frac{N_{\mathrm{X}}}{N_{\mathrm{Y}}}=2 \times \frac{\left(N_{0}\right)_{\mathrm{X}} / 4}{\left(N_{0}\right)_{\mathrm{Y}} / 2}=1
$$

Question 10.

A star converts all its hydrogen to helium achieving 100% helium composition. It then converts helium to carbon via the reaction.

The mass of the star is $5 \times 10^{\mathbf{3 2}} \mathbf{~ k g}$ and it ${ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+7.27 \mathrm{MeV}$ generates energy at the rate of 5×10^{30} watt. How long will it take to convert all the helium to carbon at this rate?

Answer:
As $4 \times 10^{-3} \mathrm{~kg}$ of He consists of $6.023 \times 10^{23} \mathrm{He}$ nuclei so $5 \times 10^{32} \mathrm{~kg}$ He will contain $6.023 \times 1023 \times 5 \times 10324 \times 10-3=7.5 \times 10^{58}$ nuclei

Now three nuclei of helium produce $7.27 \times 1.6 \times 10^{-13} \mathrm{~J}$ of energy
So all nuclei in the star will produce
$\mathrm{E}=7.27 \times 1.6 \times 10-133 \times 7.5 \times 10^{58}$
$=2.9 \times 10^{46} \mathrm{~J}$
As power generated is $\mathrm{P}=5 \times 10^{30} \mathrm{~W}$, therefore time taken to convert all He nuclei into carbon is
$\mathrm{t}=\mathrm{EP}=2.9 \times 10465 \times 1030=5.84 \times 10^{15} \mathrm{~s}$
or
1.85×10^{8} years

