IMPORTANT QUESTIONS CLASS – 12 PHYSICS CHAPTER – 13 NUCLEI

Question 1. Calculate the binding energy per nucleon of Fe^{56}_{26} Given $m_{Fe} = 55.934939$ u, $m_n = 1.008665$ u and $m_p = 1.007825$ u Answer: Number of protons Z = 26Number of neutrons (A - Z) = 30Now mass defect is given by $\Delta m = Z m_p + (A - Z)m_n - M$ $\Delta m = 26 \times 1.007825 + 30 \times 1.008665 - 55.934939$

= 0.528461 u

Therefore binding energy BE = $\Delta m \times 931 \text{ MeV} = 0.528461 \times 931$ = 491.99 MeV

BE/nucleon = 491.99/56 = 8.785 MeV

Question 2.

The activity of a radioactive element drops to one-sixteenth of its initial value in 32 years. Find the mean life of the sample.

Answer:

Or 32/T = 4 or 7 = 32 / 4 = 8 years. Therefore mean life of the sample is $\tau = 1.44$ $7 = 1.44 \times 8 = 11.52$ years.

t = 32 years,
$$A = A_0 / 16$$
, using
 $A = A_0 \left(\frac{1}{2}\right)^n$ where $n = t / T$ we have
 $\frac{A_0}{16} = A_0 \left(\frac{1}{2}\right)^{32/T}$
 $\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{32/T}$

Question 3.

A radioactive sample contains 2.2 mg of pure 116C which has a half-life period of

1224 seconds. Calculate (i) the number of

atoms present initially and (ii) the activity when 5 pg of the sample will be left. Answer:

Mass of sample = 2.2 pg

Now 11 g of the sample contains 6.023×10^{23} nuclei, therefore the number of nuclei in 2.2 mg = 2.2×10^{-3} g are $\begin{array}{r} 2.2 \text{ mg} = 2.2 \times 10^{-3} \text{ g are} \\ \frac{6.023 \times 10^{23}}{11} \times 2.2 \times 10^{-3} = 1.2 \times 10^{20} \\ \text{Given } T = 1224 \text{ s.} \end{array}$

Question 4. The half-life of 238 92U is 4.5×10^9 years. Calculate the activity of 1 g sample of ${}_{92}{}^{238}$ U. Answer: Given T = 4.5×10^9 years. Number of nuclei of U in 1 g = N = $6.023 \times 1023238 = 2.5 \times 10^{21}$ Therefore estimize $A = \lambda N = \frac{0.693}{2}$

Therefore activity

$$\lambda N = \frac{0.693}{T} \times N = \frac{0.693}{4.5 \times 10^9} \times 2.5 \times 10^{21}$$
$$= 3.85 \times 10^{11} \text{ dis } \text{ y}^{-1}$$

Number of nuclei in 5 µg

 $A = -\lambda N = \frac{0.693}{T} \times N$

 $N = \frac{6.023 \times 10^{23}}{11} \times 5 \times 10^{-6} = 2.7 \times 10^{17}$

 $= \frac{0.693}{1224} \times 2.7 \times 10^{17} = 1.53 \times 10^{14} \text{ s}^{-1}$

Question 5.

The decay constant for a given radioactive sample is 0.3456 per day. What percentage of this sample will get decayed in a period of 4 days?

Let N be the mass left behind, then $N = N_0 e^{-\lambda t}$

Answer:

Given λ = 0.3456 day^-1 or $T_{1/2}$ = 0.693/ λ = 0.693/ 0.3456 = 2.894 days, t = 4 days.

or $N = N_0 e^{-0.3456 \times 4}$ or $N = N_0 e^{-1.3824} = N_0 \times 0.25$ $\frac{N_0 - N}{N_0} \times 100 = \frac{N_0 - 0.25N_0}{N_0} \times 100$ = 75%

Therefore the percentage of undecayed is

Question 6.

It is observed that only 6.25 % of a given radioactive sample is left undecayed after a period of 16 days. What is the decay constant of this sample per day? Answer: Given N/N₀ = 6.25 %, t = 16 days, $\lambda = ?$ Or 16/T = 4 or T = 4 days. $\frac{N}{N_0} = 6.25 \% = \frac{1}{16}$ Using the relation $N = N_0 (\frac{1}{2})^n$ we have $\frac{N}{N_0} = (\frac{1}{2})^{16/T}$ or $(\frac{1}{16}) = (\frac{1}{2})^{16/T}$ or $(\frac{1}{2})^4 = (\frac{1}{2})^{16/T}$ Therefore $\lambda = 1/T = 1/4 = 0.25 \text{ day}^{-1}$

Question 7.

A radioactive substance decays to 1/32th of its initial value in 25 days. Calculate its half-life.

Answer:

Given t = 25 days, $N = N_0 / 32$, using

Or 25/7= 5 or T= 25 / 5 = 5 days.

$$N = N_0 \left(\frac{1}{2}\right)^n \text{ where } n = t / T \text{ we have}$$
$$\frac{N_0}{32} = N_0 \left(\frac{1}{2}\right)^{25/T} \text{ or } \left(\frac{1}{2}\right)^5 = \left(\frac{1}{2}\right)^{25/T}$$

Question 8. The half-life of a radioactive sample is 30 s. Calculate (i) the decay constant, and Answer: Given $T_1/2 = 30$ s, $N = 3N_0 / 4$, $\lambda = ?$, t = ?(i) Decay constant $\lambda = 0.693T1/2=0.69330 = 0.0231$ s⁻¹

(ii) time taken for the sample to decay to 3/4 th of its initial value.

Answer: Using N = N₀e^{- λt} we have Question 9. $\frac{3N_0}{4} = N_0 e^{-\lambda t} \text{ or } \ln \frac{4}{3} = \lambda t \text{ or}$ $t = \frac{2.303 \log 1.333}{\lambda}$ $= \frac{2.303 \log 1.333}{0.0231} = 12.49 \text{ s}$

Question 9. The half-life of 14 6C is 5700 years. What does it mean?

Two radioactive nuclei X and Y initially contain an equal number of atoms. Their half-lives are 1 hour and 2 hours respectively. Calculate the ratio of their rates of disintegration after 2 hours.

Answer:

It means that in 5700 years the number of nuclei of carbon decay to half their original value. Given $N_{ox} = N_{oY}$, $T_X = 1$ h, $T_Y = 2$ h, therefore $\lambda X \lambda Y = 21 = 2$

Now after 2 hours X will reduce to one- fourth and Y will reduce to half their original value. If activities at t = 2 h are R_x and R_y respectively, then

Thus their rate of disintegration after 2 hours is the same.

$$\frac{R_{\rm X}}{R_{\rm Y}} = \frac{\lambda_{\rm X}}{\lambda_{\rm Y}} \times \frac{N_{\rm X}}{N_{\rm Y}} = 2 \times \frac{\left(N_0\right)_{\rm X}}{\left(N_0\right)_{\rm Y}} \frac{4}{2} = 1$$

Question 10.

A star converts all its hydrogen to helium achieving 100% helium composition. It then converts helium to carbon via the reaction.

The mass of the star is 5×10^{32} kg and it generates energy at the rate of 5×10^{30} watt. How long will it take to convert all the helium to carbon at this rate?

Answer:

As 4×10^{-3} kg of He consists of 6.023×10^{23} He nuclei so 5×10^{32} kg He will contain $6.023 \times 1023 \times 5 \times 10324 \times 10-3 = 7.5 \times 10^{58}$ nuclei

Now three nuclei of helium produce $7.27 \times 1.6 \times 10^{-13}$ J of energy So all nuclei in the star will produce E = $7.27 \times 1.6 \times 10 - 133 \times 7.5 \times 10^{58}$ = 2.9×10^{46} J

As power generated is P = 5×10^{30} W, therefore time taken to convert all He nuclei into carbon is

t = EP= $2.9 \times 10465 \times 1030 = 5.84 \times 10^{15}$ s or 1.85×10^{8} years