IMPORTANT QUESTIONS CLASS - 12 PHYSICS CHAPTER - 9 RAY OPTICS AND OPTICAL INSTRUMENTS

Question 1.
A convex lens made up of a glass of refractive index 1.5 is dipped, In turn, In (a) a medium of refractive index 1.65 ,

Answer:
When dipped in the medium of refractive index 1.65 , it will behave as a concave lens and when dipped in the medium of refractive index 1.33 , it will behave as a convex lens.
(b) a medium of refractive index 1.33 .
(i) Will it behave as a converging or a diverging lens in the two cases?

Answer:
Its focal length in another medium is given by
Thus $f_{m}=-5.5 f_{a}$, i.e. focal length increases and becomes negative.

$$
\begin{aligned}
\frac{f_{m}}{f_{a}} & =\frac{\left(. \mu_{\mathrm{q}}-1\right)}{\left(\frac{\mu_{\mathrm{g}}}{\mu_{\mathrm{m}}}-1\right)}=\frac{1.5-1}{\left(\frac{1.5}{1.65}-1\right)}=\frac{0.5}{-0.09} \\
& =-5.5
\end{aligned}
$$

(ii) How will Its focal length change In the two media? (CBSE AI 2011)
Answer:
Similarly

$$
\begin{aligned}
\frac{f_{\mathrm{m}}}{f_{\mathrm{s}}} & =\frac{\left(\mu_{\mathrm{s}}-1\right)}{\left(\frac{. \mu_{\mathrm{s}}}{\mu_{\mathrm{m}}}-1\right)}=\frac{1.5-1}{\left(\frac{1.5}{1.33}-1\right)}=\frac{0.5}{0.15} \\
& =3.3
\end{aligned}
$$

Thus $f_{m}=3.3 f_{a}$, i.e. focal length increases.

Question 2.

A compound microscope uses an objective
lens of focal length $4 \mathbf{~ c m}$ and an eyepiece lens
of focal length 10 cm . An object is placed at 6
cm from the objective lens. Calculate the magnifying power of the compound microscope. Also, calculate the length of the microscope. (CBSE Al 2011) Answer:
Answer:
$\mathrm{f}_{\mathrm{o}}=4 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=10 \mathrm{~cm}, \mathrm{u}_{\mathrm{o}}=-6 \mathrm{~cm}, \mathrm{M}=$?, $\mathrm{L}=$?
Using

$$
\begin{array}{ll}
\frac{1}{f_{0}}=\frac{1}{v_{0}}-\frac{1}{u_{0}} \text { we have } & \\
\frac{1}{v_{0}}=\frac{1}{f_{0}}+\frac{1}{u_{0}}=\frac{1}{4}+\frac{1}{-6}=\frac{3-2}{12}=\frac{1}{12} \text { or } & M=\frac{v_{0}}{u_{0}} \times\left(1+\frac{D}{f_{0}}\right)=\frac{12}{6}\left(1+\frac{25}{10}\right)=7 \\
v_{0}=12 \mathrm{~cm} & L=v_{0}+u_{e} \\
& \text { Now } \frac{1}{f_{e}}=\frac{1}{v_{e}}-\frac{1}{u_{e}} \text { or }
\end{array}
$$

Hence angular magnification

$$
\begin{aligned}
& \frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}=\frac{1}{-25}-\frac{1}{10}=\frac{-7}{50} \text { or } \\
& \text { Therefore } L=12+50 / 7=19.1 \mathrm{~cm}
\end{aligned}
$$

Question 3.
A giant refracting telescope at an observatory has an objective lens of focal length 15 m . If an eyepiece lens of focal length 1 cm is used, find the angular magnification of the telescope. If this telescope is used to view the moon, what is the diameter of the image of the moon formed by the objective lens? The diameter of the moon is $3.42 \times 10^{6} \mathrm{~m}$ and the radius of the lunar orbit is $3.8 \times 10^{8} \mathrm{~m}$.
(CBSE AI 2011, Delhi 2015)

Answer:
Given $\mathrm{f}_{\mathrm{o}}=15 \mathrm{~m}, \mathrm{f}_{\mathrm{e}}=1.0 \mathrm{~cm}=0.01 \mathrm{~m}, \mathrm{M}=$?
$\mathrm{Dm}=3.48 \times 10^{6} \mathrm{~m}, \mathrm{r}=3.8 \times 10^{8} \mathrm{~m}$,
Using $M=$ fofe $=150.01=1500$
The angle subtended by the moon at the objective of the telescope

Question 4.
A beam of light converges at a point P.
A concave lens of focal length 16 cm is placed in the path of this beam 12 cm from P. Draw a ray diagram and find the location of the point at which the beam would now converge. (CBSE
Delhi 2011C)
Answer:
The ray diagram is shown in the figure. In the
absence of the concave lens the beam
converges at point P. When the concave lens
is introduced, the incident beam of light is diverged and now comes to focus at point Q . Thus for the concave lens P serves as a virtual object giving rise to a real Image at Q .

Here $u=+12 \mathrm{~cm}, \mathrm{f}=-16 \mathrm{~cm}, \mathrm{v}=$? , Now for a lens

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \text { or } \frac{1}{v}-\frac{1}{12}=\frac{1}{-16}
$$

Hence v=48 cm
or $\frac{1}{v}=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}$

Question 5.
Two convex lenses of focal length
20 cm and 1 cm constitute a
telescope. The telescope is focused
on a point that is 1 m away from the
objective. Calculate the
magnification produced and the
length of the tube, if the final image
Is formed at a distance of 25 cm from the eyepiece.
Answer:
Given $\mathrm{f}_{\mathrm{o}}=20 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=1 \mathrm{~cm}, \mathrm{u}=-100 \mathrm{~cm}, \mathrm{M}=$?, $\mathrm{y}=$?
Fora lens $1 \mathrm{v}-1 \mathrm{u}=1 \mathrm{f}$
or
$1 \mathrm{v}-1-100=120$
or
$\mathrm{v}=25 \mathrm{~cm}$

Since the eye lens forms the image of the virtual object at the distance of distinct vision for the eye lens
$\mathrm{v}=-25 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=1 \mathrm{~cm}$,
Now 1v-1u=1f
or
$1-25-1 u=1$
or
$\mathrm{u}=-2526 \mathrm{~cm}$
Now magnification produced by the object lens
$\mathrm{m}_{\mathrm{O}}=\mathrm{vu}=-25100=-14$
Magnification produced by the eye Lens
$m_{e}=v u=-25-25 \times 26=26$
Hence total magnification
$\mathrm{M}=\mathrm{m}_{\mathrm{o}} \times \mathrm{m}_{\mathrm{e}}=-1 / 4 \times 26=-6.5$
Question 6.
(a) Under what conditions are the phenomenon of total internal reflection of light observed? Obtain the relation between the critical angle of incidence and the refractive index of the medium.
(b) Three lenses of focal lengths $+10 \mathrm{~cm},-10 \mathrm{~cm}$ and +30 cm are arranged coaxially as in the figure given below. Find the position of the final image
formed by the combination.

Answer:
(a) (i) Light travels from a denser medium to a rarer medium.

(ii) Angle of Incidence in the denser medium is more than the critical angle for a given pair of media.
For the grazing incidence $n \sin \mathrm{i}_{\mathrm{C}}=1 \sin 90^{\circ}$
$\mathrm{n}=1$ sinic

$$
\frac{1}{10}=\frac{1}{v_{1}}-\frac{1}{-30} \Rightarrow v_{1}=15 \mathrm{~cm}
$$

(b) For convex lens $\mathrm{f}=+10 \mathrm{~cm}$

Object distance for concave lens $\mathrm{u}_{2}=15-5=10 \mathrm{~cm}$

For third lens

$$
\frac{1}{f_{2}}=\frac{1}{v_{2}}-\frac{1}{u_{2}}
$$

$1 \mathrm{f} 3=1 \mathrm{v} 3-10 \Rightarrow \mathrm{v}_{3}=30 \mathrm{~cm}$

$$
\frac{1}{-10}=\frac{1}{v_{2}}-\frac{1}{10} \Rightarrow v_{2}=\infty
$$

Question 7.

A ray of light incident on an equilateral glass prism
($\mu_{\mathrm{g}}=3-\sqrt{ }$) moves parallel to the baseline of the prism
inside it. Find the angle of Incidence for this ray.
Answer:
Given $\mathrm{A}=60^{\circ}, \mu_{\mathrm{g}}=3-\sqrt{ }, \mathrm{i}=$?
Using the expression $\mu=\operatorname{sinisin} \mathrm{A} / 2$ or
$\sin i=\mu \times \sin A / 2$
$\operatorname{Sin} i=\sqrt{3} \times \sin 30=\frac{\sqrt{3}}{2}$
Therefore $i=60^{\circ}$

Question 8.

Two monochromatic rays of light are incident
normally on the face $A B$ of an isosceles right-angled prism ABC. The refractive indices of the glass prism for the two rays ' 1 ' and ' 2 ' are respectively 1.35 and
1.45. Trace the path of these rays after entering through the prism.

Answer:
The critical angle for the two rays is

$$
\begin{aligned}
& n_{1}=\frac{1}{\sin i_{1}} \text { or } \sin i_{1}=\frac{1}{1.35}=0.741 \\
& \text { Or } i_{1}=47.80 \\
& n_{2}=\frac{1}{\sin i_{2}} \text { or } \sin i_{2}=\frac{1}{1.45}=0.6896 \\
& \text { Or } i_{2}=43.60
\end{aligned}
$$

This shows that the angle of Incidence for ray ' 2 ' Is greater than the critical angle. Hence it suffers total internal reflection, white ray ' 1 ' does not. Hence the path of rays is as shown.
Question 9.

A convex lens of focal length 20 cm is placed

 coaxially with a convex mirror of radius of curvature 20 cm . The two are kept at 15 cm from each other. A point object lies 60 cm in front of the convex lens. Draw a ray diagram to show the formation of the image by the combination. Determine the nature andposition of the image formed. (CBSE AI 2014)
Answer:
The ray diagram is as shown.

For the convex lens, we have
$\mathrm{u}_{1}=-60 \mathrm{~cm}, \mathrm{f}=+20 \mathrm{~cm}, \mathrm{v}=$?
Using lens formula we have

> Using lens lon mura we nave

$$
\begin{aligned}
\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \text { or } v & =\frac{u f}{u+f} \\
& =\frac{-60 \times 20}{-60+20}=\frac{-1200}{-40}=+30 \mathrm{~cm}
\end{aligned}
$$

Had there been only the Lens, the image would have been formed at Q_{1}, which acts as a virtual
object for the convex mirror.
Therefore $\mathrm{u}_{2}=\mathrm{OQ}_{1}-\mathrm{OO}=30-15=15$
cm
Using mirror formuLa we have
$1 \mathrm{~V} 2+1 \mathrm{u} 2=2 \mathrm{R}$
or
1v2+1u15=220
Solving for v_{2} we have
$\mathrm{v}_{2}=30 \mathrm{~cm}$
Hence the final image is formed at (Point
Q) a distance of 30 cm behind the mirror.

Question 10.

A ray $P Q$ is an incident normally
on the face $A B$ of a triangular prism refracting angle of $\mathbf{6 0 ^ { \circ }}$, made of a transparent material
of refractive index $2 / 3-\sqrt{ }$, as shown in the figure. Trace the path of the ray as it passes through the prism. Also, calculate the angle of emergence and angle deviation.

Answer:

Critical angle for glass
$\mu=1$ sinic
or
$\sin i_{c}=1 \mu=3 \sqrt{ } 2=0.866$
or
$\mathrm{i}_{\mathrm{c}}=60^{\circ}$
Now the ray is incident at an angle of 60° which is equal to the critical angle, therefore the ray graces the other edge of the prism

Therefore the angle of emergence is $=90^{\circ}$
Hence $\delta=30^{\circ}$

