CHAPTER -5 Lines and Angles | CLASS 7TH MATHS IMPORTANT QUESTIONS

Important Questions

Question 1.		$\frac{1}{2}$ of $(90-r)^\circ = r^\circ$
Find the angles which is 15 of its complement.		5 1 $(100$ 100 $(100$ 100 $(100$ $(100$ (100)
Solution:	⇒	$\frac{-}{5} \times (90 - x)^{\circ} = x^{\circ}$
Let the required angle be x ^o	\Rightarrow	$\frac{1}{5} \times 90^{\circ} - \frac{1}{5} \times x^{\circ} = x^{\circ}$
its complement = $(90 - x)^{\circ}$	⇒	$18^\circ - \frac{1}{\kappa}x^\circ = x^\circ$
As per condition, we get		1
	⇒	$x^{\circ} + \frac{-}{5}x^{\circ} = 18^{\circ}$
	⇒	$\frac{6}{5}x^{\circ} = 18^{\circ}$
	<i>.</i> :.	$x^{\circ} = 18 \times \frac{5}{6}^{\circ} = 15^{\circ}$
	Thus, tł	ne required angle be 15°.

Question 2.

Find the angles which is 23 of its supplement.

Solution:

Let the required angle be x° . its supplement = $(180 - x)^{\circ}$

As per the condition, we get 23 of $(180 - x)^{\circ} = x^{\circ}$

Question 3.

Find the value of x in the given figure. Solution:

 $\angle POR + \angle QOR = 180^{\circ} \text{ (Angles of linear pair)}$ $\Rightarrow (2x + 60^{\circ}) + (3x - 40)^{\circ} = 180^{\circ}$ $\Rightarrow 2x + 60 + 3x - 40 = 180^{\circ}$ $\Rightarrow 5x + 20 = 180^{\circ}$ $\Rightarrow 5x = 180 - 20 = 160$ $\Rightarrow x = 32$ Thus, the value of x = 32. Question 4. In the given figure, find the value of y.

 $\frac{2}{3} \times (180 - x)^\circ = x^\circ$

 $\therefore \qquad x^{\circ} = 120^{\circ} \times \frac{3}{5} = 72^{\circ}$ Thus, the required angle be 72°.

 $x^{\circ} = 120^{\circ}$

×180° -

Solution:

Let the angle opposite to 90° be z.

z = 90° (Vertically opposite angle)

 $3y + z + 30^{\circ} = 180^{\circ}$ (Sum of adjacent angles on a straight line)

 $\Rightarrow 3y + 90^{\circ} + 30^{\circ} = 180^{\circ}$ $\Rightarrow 3y + 120^{\circ} = 180^{\circ}$ $\Rightarrow 3y = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\Rightarrow y = 20^{\circ}$ Thus the value of y = 20°.

Question 5. Find the supplements of each of the following: (i) 30° (ii) 79° (iii) 179° (iv) x° (v) 25 of right angle Solution: (i) Supplement of $30^{\circ} = 180^{\circ} - 30^{\circ} = 150^{\circ}$ (ii) Supplement of $79^{\circ} = 180^{\circ} - 79^{\circ} = 101^{\circ}$ (iii) Supplement of $179^{\circ} = 180^{\circ} - 179^{\circ} = 1^{\circ}$ (iv) Supplement of $x^{\circ} = (180 - x)^{\circ}$ (v) Supplement of 25 of right angle $= 180^{\circ} - 25 \times 90^{\circ} = 180^{\circ} - 36^{\circ} = 144^{\circ}$

Question 6.

If the angles $(4x + 4)^{\circ}$ and $(6x - 4)^{\circ}$ are the supplementary angles, find the value of x.

Solution:

 $(4x + 4)^{\circ} + (6x - 4)^{\circ} = 180^{\circ}$ (:: Sum of the supplementary angle is 180°)

 $\Rightarrow 4x + 4 + 6x - 4 = 180^{\circ}$

 $\Rightarrow 10x = 180^{\circ}$

 \Rightarrow x = 18°

Thus, $x = 18^{\circ}$

Question 7. Find the value of x.

Solution:

 $(6x - 40)^{\circ} + (5x + 9)^{\circ} + (3x + 15)^{\circ} = 180^{\circ}$ (:: Sum of adjacent angles on straight line) $\Rightarrow 6x - 40 + 5x + 9 + 3x + 15 = 180^{\circ}$ $\Rightarrow 14x - 16 = 180^{\circ}$

Thus, $y = 45^{\circ}$