CHAPTER -5 Lines and Angles | CLASS 7TH MATHS IMPORTANT QUESTIONS

Important Questions

Question 1.
Find the angles which is 15 of its complement.
Solution:

$$
\begin{array}{cc}
& \frac{1}{5} \text { of }(90-x)^{\circ}=x^{\circ} \\
\Rightarrow & \frac{1}{5} \times(90-x)^{\circ}=x^{\circ} \\
\Rightarrow & \frac{1}{5} \times 90^{\circ}-\frac{1}{5} \times x^{\circ}=x^{\circ} \\
\Rightarrow & 18^{\circ}-\frac{1}{5} x^{\circ}=x^{\circ} \\
\Rightarrow & x^{\circ}+\frac{1}{5} x^{\circ}=18^{\circ} \\
\Rightarrow & \frac{6}{5} x^{\circ}=18^{\circ} \\
\therefore & x^{\circ}=18 \times \frac{5^{\circ}}{6}=15^{\circ}
\end{array}
$$

Thus, the required angle be 15°.
Question 2.
Find the angles which is 23 of its supplement.

Solution:
Let the required angle be x^{0}.
its supplement $=(180-x)^{\circ}$
As per the condition, we get
23 of $(180-x)^{\circ}=x^{0}$
$\Rightarrow \quad \frac{2}{3} \times(180-x)^{\circ}=x^{\circ}$
$\Rightarrow \quad \frac{2}{3} \times 180^{\circ}-\frac{2}{3} \times x^{\circ}=x^{\circ}$
$\Rightarrow \quad \cdot 120^{\circ}-\frac{2}{3} x^{\circ}=x^{\circ}$
$\Rightarrow \quad x^{\circ}+\frac{2}{3} x^{\circ}=120^{\circ}$
$\Rightarrow \quad \frac{5}{3} x^{\circ}=120^{\circ}$
$x^{\circ}=120^{\circ} \times \frac{3}{5}=72^{\circ}$
Thus, the required angle be 72°.

Question 3.
Find the value of x in the given figure. Solution:
$\angle \mathrm{POR}+\angle \mathrm{QOR}=180^{\circ}$ (Angles of linear pair)

$\Rightarrow\left(2 \mathrm{x}+60^{\circ}\right)+(3 \mathrm{x}-40)^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+6 \mathrm{o}+3 \mathrm{x}-40=180^{\circ}$
$\Rightarrow 5 \mathrm{x}+20=180^{\circ}$
$\Rightarrow 5 \mathrm{x}=18 \mathrm{o}-20=160$
$\Rightarrow \mathrm{x}=32$
Thus, the value of $x=32$.
Question 4.
In the given figure, find the value of y.

Solution:
Let the angle opposite to 90° be z .

$\mathrm{z}=90^{\circ}$ (Vertically opposite angle)
$3 y+z+30^{\circ}=180^{\circ}$ (Sum of adjacent angles on a straight line)
$\Rightarrow 3 y+90^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow 3 y+120^{\circ}=180^{\circ}$
$\Rightarrow 3 y=180^{\circ}-120^{\circ}=60^{\circ}$
$\Rightarrow \mathrm{y}=20^{\circ}$
Thus the value of $y=20^{\circ}$.
Question 5.
Find the supplements of each of the following:
(i) 30°
(ii) 79°
(iii) 179°
(iv) x°
(v) 25 of right angle

Solution:
(i) Supplement of $30^{\circ}=180^{\circ}-30^{\circ}=150^{\circ}$
(ii) Supplement of $79^{\circ}=180^{\circ}-79^{\circ}=101^{\circ}$
(iii) Supplement of $179^{\circ}=180^{\circ}-179^{\circ}=1^{\circ}$
(iv) Supplement of $x^{\circ}=(180-x)^{\circ}$
(v) Supplement of 25 of right angle
$=180^{\circ}-25 \times 90^{\circ}=180^{\circ}-36^{\circ}=144^{\circ}$
Question 6.
If the angles $(4 x+4)^{\circ}$ and $(6 x-4)^{\circ}$ are the supplementary angles, find the value of x.
Solution:
$(4 \mathrm{x}+4)^{\circ}+(6 \mathrm{x}-4)^{\circ}=180^{\circ}(\because$ Sum of the supplementary angle is 180°)
$\Rightarrow 4 \mathrm{x}+4+6 \mathrm{x}-4=180^{\circ}$
$\Rightarrow 10 \mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=18^{\circ}$
Thus, $\mathrm{x}=18^{\circ}$
Question 7.
Find the value of x.

Solution:

$(6 x-40)^{\circ}+(5 x+9)^{\circ}+(3 x+15)^{\circ}=180^{\circ}(\because$ Sum
of adjacent angles on straight line)
$\Rightarrow 6 \mathrm{x}-4 \mathrm{O}+5 \mathrm{x}+9+3 \mathrm{x}+15=18 \mathrm{o}^{\circ}$
$\Rightarrow 14 \mathrm{x}-16=180^{\circ}$

$$
\Rightarrow 14 x=180+16=196
$$

$$
\Rightarrow x=14
$$

Thus, $\mathrm{x}=14$
Question 8.
Find the value of y.

Solution:

$\mathrm{l} \| \mathrm{m}$, and t is a transversal.
$y+135^{\circ}=180^{\circ}$ (Sum of interior angles on the same side of transversal is 180°)
$\Rightarrow \mathrm{y}=180^{\circ}-135^{\circ}=45^{\circ}$
Thus, $\mathrm{y}=45^{\circ}$

