CHAPTER -6 The Triangle and its Properties | CLASS 7TH MATHS IMPORTANT QUESTIONS

Important Questions

Question 1.
In $\triangle \mathrm{ABC}$, write the following:
(a) Angle opposite to side BC.
(b) The side opposite to $\angle \mathrm{ABC}$.
(c) Vertex opposite to side AC.

Solution:
(a) In $\triangle \mathrm{ABC}$, Angle opposite to BC is $\angle \mathrm{BAC}$
(b) Side opposite to $\angle \mathrm{ABC}$ is AC
(c) Vertex opposite to side AC is B

Question 2.
Classify the following triangle on the bases of sides

Solution:

(i)

(ii)
(i) $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{QR}=7 \mathrm{~cm}$
$P Q \neq P R \neq Q R$
Thus, $\triangle \mathrm{PQR}$ is a scalene triangle.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$

(iii)
$\mathrm{AB}=\mathrm{AC}$
Thus, $\triangle \mathrm{ABC}$ is an isosceles triangle.
(iii) $\mathrm{MN}=3 \mathrm{~cm}, \mathrm{ML}=3 \mathrm{~cm}$ and $\mathrm{NL}=3 \mathrm{~cm}$
$\mathrm{MN}=\mathrm{ML}=\mathrm{NL}$
Thus, $\triangle \mathrm{MNL}$ is an equilateral triangle.
Question 3.
In the given figure, name the median and
the altitude. Here E is the midpoint of BC .
Solution
In $\triangle \mathrm{ABC}$, we have
AD is the altitude.
AE is the median.

Question 4.
In the given diagrams, find the value of x in each case.

Solution:
(i) $\mathrm{x}+45^{\circ}+30^{\circ}=180^{\circ}$ (Angle sum property of a

triangle)
$\Rightarrow \mathrm{x}+75^{\circ}-180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-75^{\circ}$
$\mathrm{x}=105^{\circ}$
(ii) Here, the given triangle is right angled triangle.
$\mathrm{x}+30^{\circ}=90^{\circ}$
$\Rightarrow \mathrm{x}=90^{\circ}-30^{\circ}=60^{\circ}$
(iii) $x=60^{\circ}+65^{\circ}$ (Exterior angle of a triangle is equal to the sum of interior opposite angles)
$\Rightarrow \mathrm{x}=125^{\circ}$
Question 5.
Which of the following cannot be the sides of a triangle?
(i) $4.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 6.4 \mathrm{~cm}$
(ii) $2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 6.0 \mathrm{~cm}$
(iii) $2.5 \mathrm{~cm}, 4.2 \mathrm{~cm}, 8 \mathrm{~cm}$

Solution:
(i) Given sides are, $4.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 6.4 \mathrm{~cm}$

Sum of any two sides $=4.5 \mathrm{~cm}+3.5 \mathrm{~cm}=8 \mathrm{~cm}$
Since $8 \mathrm{~cm}>6.4 \mathrm{~cm}$ (Triangle inequality)
The given sides form a triangle.
(ii) Given sides are $2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 6.0 \mathrm{~cm}$

Sum of any two sides $=2.5 \mathrm{~cm}+3.5 \mathrm{~cm}=6.0 \mathrm{~cm}$
Since $6.0 \mathrm{~cm}=6.0 \mathrm{~cm}$
The given sides do not form a triangle.
(iii) $2.5 \mathrm{~cm}, 4.2 \mathrm{~cm}, 8 \mathrm{~cm}$

Sum of any two sides $=2.5 \mathrm{~cm}+4.2 \mathrm{~cm}=6.7 \mathrm{~cm}$
Since $6.7 \mathrm{~cm}<8 \mathrm{~cm}$
The given sides do not form a triangle.

Question 6.
In the given figure, find x .

Solution:
In $\triangle \mathrm{ABC}$, we have

$5 \mathrm{x}-60^{\circ}+2 \mathrm{x}+40^{\circ}+3 \mathrm{x}-80^{\circ}=180^{\circ}$ (Angle sum
property of a triangle)
$\Rightarrow 5 \mathrm{x}+2 \mathrm{x}+3 \mathrm{x}-60^{\circ}+40^{\circ}-80^{\circ}=180^{\circ}$
$\Rightarrow 10 \mathrm{x}-100^{\circ}=180^{\circ}$
$\Rightarrow 10 \mathrm{x}=180^{\circ}+100^{\circ}$
$\Rightarrow 10 \mathrm{x}=280^{\circ}$
$\Rightarrow \mathrm{x}=28^{\circ}$
Thus, $x=28^{\circ}$
Question 7.
One of the equal angles of an isosceles triangle is 50°. Find all the angles of this triangle.
Solution:
Let the third angle be x°.
$\mathrm{x}+50^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}+100^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=180^{\circ}-100^{\circ}=80^{\circ}$
Thus $\angle \mathrm{x}=80^{\circ}$
Question 8.
In $\triangle \mathrm{ABC}, \mathrm{AC}=\mathrm{BC}$ and $\angle \mathrm{C}=110^{\circ}$. Find $\angle \mathrm{A}$ and $\angle \mathrm{B}$.

Solution:

In given $\triangle \mathrm{ABC}, \angle \mathrm{C}=110^{\circ}$
Let $\angle \mathrm{A}=\angle \mathrm{B}=\mathrm{x}^{\circ}$ (Angle opposite to equal sides of a triangle
are equal)
$\mathrm{x}+\mathrm{x}+110^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+110^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=180^{\circ}-110^{\circ}$
$\Rightarrow 2 \mathrm{x}=70^{\circ}$
$\Rightarrow \mathrm{x}=35^{\circ}$
Thus, $\angle \mathrm{A}=\angle \mathrm{B}=35^{\circ}$

