Chapter 10 Circles Class 9 Maths important questions

Question 1.

In the figure, O is the centre of a circle passing through points A, B, C and D and $\angle ADC = 120^{\circ}$. Find the value of x.

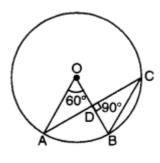
Solution: Since ABCD is a cyclic quadrilateral $\angle ADC + \angle ABC = 180^{\circ}$ [\therefore opp. \angle s of a cyclic quad. are supplementary] $120^{\circ} + \angle ABC = 180^{\circ}$ $\angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Now, $\angle ACB = 90^{\circ}$ [angle in a semicircle] In rt. \angle ed $\triangle CB$, $\angle ACB = 90^{\circ}$ $\angle CAB + \angle ABC = 90^{\circ}$ $x + 60^{\circ} = 90^{\circ}$ $x = 90^{\circ} - 60^{\circ}$ $x = 30^{\circ}$

Question 2.

In the given figure, O is the centre of the circle, $\angle AOB = 60^{\circ}$ and $CDB = 90^{\circ}$. Find $\angle OBC$.

Solution:

Since angle subtended at the centre by an arc is double the angle subtended at the remaining part of the circle. $\therefore \angle ACB = 13 \angle AOB = 13 \times 60^{\circ} = 30^{\circ}$ Now, in ACBD, by using angle sum property, we have $\angle CBD + \angle BDC + \angle DCB = 180^{\circ}$ $\angle CBO + 90^{\circ} + \angle ACB = 180^{\circ}$ [$\therefore \angle CBO = \angle CBD$ and $\angle ACB = \angle DCB$ are the same $\angle s$] $\angle CBO + 90^{\circ} + 30^{\circ} = 180^{\circ}$ $\angle CBO = 1800 - 90^{\circ} - 30^{\circ} = 60^{\circ}$ or $\angle OBC = 60^{\circ}$



Question 3.

In the given figure, O is the centre of the circle with chords AP and BP being produced to R and Q respectively. If \angle QPR = 35°, find the measure of \angle AOB.

Solution: $\angle APB = \angle RPQ = 35^{\circ}$ [vert. opp. $\angle s$] Now, $\angle AOB$ and $\angle APB$ are angles subtended by an arc AB at centre and at the remaining part of the circle.

 $\therefore \angle AOB = 2 \angle APB = 2 \times 35^{\circ} = 70^{\circ}$

Question 4. In the figure, PQRS is a cyclic quadrilateral. Find the value of x.

Solution:

In Δ PRS, by using angle sum property, we have $\angle PSR + \angle SRP + \angle RPS = 180^{\circ}$ $\angle PSR + 50^{\circ} + 350 = 180^{\circ}$ $\angle PSR = 180^{\circ} - 850 = 95^{\circ}$ Since PQRS is a cyclic quadrilateral $\therefore \angle PSR + \angle PQR = 180^{\circ}$ [\because opp. \angle s of a cyclic quad. are supplementary] $95^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 95^{\circ}$ $x = 85^{\circ}$

Question 5. In the given figure, $\angle ACP = 40^{\circ}$ and BPD = 120°, then find $\angle CBD$.

Solution: $\angle BDP = \angle ACP = 40^{\circ}$ [angle in same segment] Now, in $\triangle BPD$, we have $\angle PBD + \angle BPD + \angle BDP = 180^{\circ}$ $\Rightarrow \angle PBD + 120^{\circ} + 40^{\circ} = 180^{\circ}$ $\Rightarrow \angle PBD = 180^{\circ} - 1600 = 20^{\circ}$ or $\angle CBD = 20^{\circ}$

 \angle BEC is exterior angle of \triangle CDE.

 $\therefore \angle CDE + \angle DCE = \angle BEC$

 $\Rightarrow \angle CDE + 25^{\circ} = 120^{\circ}$

Question 6. In the given figure, if $\angle BEC = 120^\circ$, $\angle DCE = 25^\circ$, then find $\angle BAC$.

Now, $\angle BAC = \angle CDE$ [: angle in same segment are equal]

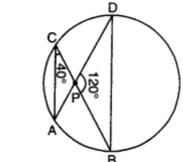
Question 7.

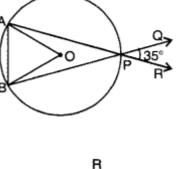
 $\Rightarrow \angle CDE = 95^{\circ}$

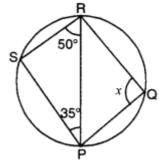
 $\Rightarrow \angle BAC = 95^{\circ}$

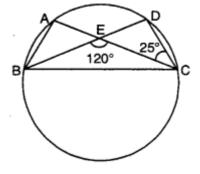
Solution:

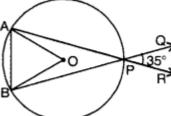
In the given figure, PQR = 100°, where P, Q and R are points on a circle with centre O. Find LOPR.











Solution:

Take any point A on the circumcircle of the circle. Join AP and AR. ∴ APQR is a cyclic quadrilateral. $\therefore \angle PAR + \angle PQR = 180^{\circ}$ [sum of opposite angles of a cyclic quad. is 180°] $\angle PAR + 100^{\circ} = 180^{\circ}$ \Rightarrow Since \angle POR and \angle PAR are the angles subtended by an arc PR at the centre of the circle and circumcircle of the circle. $\angle POR = 2 \angle PAR = 2 \times 80^{\circ} = 160^{\circ}$ \therefore In APOR, we have OP = OR [radii of same circle] $\angle OPR = \angle ORP$ [angles opposite to equal sides] Now, $\angle POR + \angle OPR + \angle ORP = 180^{\circ}$

 \Rightarrow 160° + \angle OPR + \angle OPR = 180°

 $\Rightarrow 2 \angle OPR = 20^{\circ}$

 $\Rightarrow \angle OPR = 10^{\circ}$

Question 8.

In figure, ABCD is a cyclic quadrilateral in which AB is extended to F and BE || DC. If \angle FBE = 20° and DAB = 95°, then find \angle ADC.

Solution:

Sum of opposite angles of a cyclic quadrilateral is 180° $\therefore \angle DAB + \angle BCD = 180^{\circ}$

$$\Rightarrow 95^{\circ} + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 95^{\circ} = 85^{\circ}$$

:: BE || DC

 $\therefore \angle CBE = \angle BCD = 85^{\circ}$ [alternate interior angles]

 $\therefore \angle CBF = CBE + \angle FBE = 85^{\circ} + 20^{\circ} = 105^{\circ}$

Now, $\angle ABC + 2CBF = 180^{\circ}$ [linear pair]

and
$$\angle ABC + \angle ADC = 180^{\circ}$$
 [opposite angles of cyclic quad.]

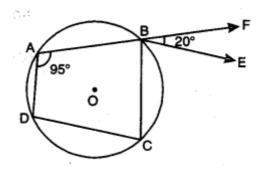
Thus, $\angle ABC + \angle ADC = \angle ABC + 2CBF$

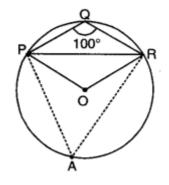
 $\Rightarrow \angle ADC = CBF$

 $\Rightarrow \angle ADC = 105^{\circ} [\because CBF = 105^{\circ}]$

Question 9 Equal chords of a circle subtends equal angles at the centre.

Solution: Given : In a circle C(O, r), chord AB = chord CDTo Prove : $\angle AOB = \angle COD$. Proof : In $\triangle AOB$ and $\triangle COD$ AO = CO (radii of same circle] BO = DO [radii of same circle]





Chord AB = Chord CD (given] $\Rightarrow \Delta AOB = ACOD [by SSS congruence axiom]$ $\Rightarrow \angle AOB = COD (c.p.c.t.]$

Question 10.

In the given figure, P is the centre of the circle. Prove that : $\angle XPZ = 2(\angle X \angle Y + \angle YXZ)$.

Solution:

Arc XY subtends \angle XPY at the centre P and \angle XZY in the remaining part of the circle. $\therefore \angle$ XPY = 2 (\angle X \angle Y) Similarly, arc YZ subtends \angle YPZ at the centre P and \angle YXZ in the remaining part of the circle. $\therefore \angle$ YPZ = 2(\angle YXZ)(ii) Adding (i) and (ii), we have \angle XPY + \angle YPZ = 2 (\angle XZY + \angle YXZ) \angle XP2 = 2 (\angle XZY + \angle YXZ)

