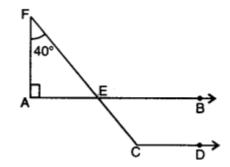
Chapter 6 Lines and Angles Class 9 Important Questions NCERT Maths

Question 1. In the given figure, AB || CD, \angle FAE = 90°, \angle AFE = 40°, find \angle ECD.

Solution: In AFAE, ext. \angle FEB = \angle A + F = 90° + 40° = 130° Since AB || CD $\therefore \angle$ ECD = FEB = 130° Hence, \angle ECD = 130°.

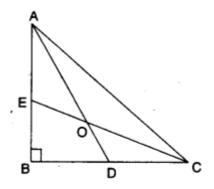


Question 2.

In the fig., AD and CE are the angle bisectors of $\angle A$ and $\angle C$ respectively. If $\angle ABC = 90^{\circ}$, then find $\angle AOC$.

Solution:

 \therefore AD and CE are the bisector of $\angle A$ and $\angle C$



$$\therefore \qquad \angle OAC = \frac{1}{2} \angle A \text{ and}$$

$$\angle OCA = \frac{1}{2} \angle C$$

$$\Rightarrow \angle OAC + \angle OCA = \frac{1}{2} (\angle A + \angle C)$$

$$= \frac{1}{2} (180^\circ - \angle B) \quad [\because \angle A + \angle B + \angle C = 180^\circ]$$

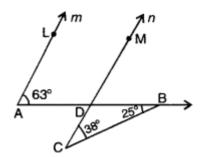
$$= \frac{1}{2} (180^\circ - 90^\circ) \quad [\because \angle ABC = 90^\circ]$$

$$= \frac{1}{2} \times 90^\circ = 45^\circ$$

In $\triangle AOC$, $\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$ $\Rightarrow \angle AOC + 450 = 180^{\circ}$ $\Rightarrow \angle AOC = 180^{\circ} - 45^{\circ} = 135^{\circ}$.

Question 3. In the given figure, prove that m || n.

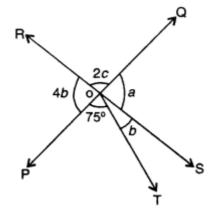
Solution: In $\triangle BCD$, ext. $\angle BDM = \angle C + \angle B$ = $38^{\circ} + 25^{\circ} = 63^{\circ}$ Now, $\angle LAD = \angle MDB = 63^{\circ}$ But, these are corresponding angles. Hence, m || n



Question 4.

In the given figure, two straight lines PQ and RS intersect each other at O. If $\angle POT = 75^{\circ}$, find the values of a, b, c.

Solution: Here, $4b + 75^{\circ} + b = 180^{\circ}$ [a straight angle] $5b = 180^{\circ} - 75^{\circ} = 105^{\circ}$ $b - 105 \circ 5 = 21^{\circ}$ $\therefore a = 4b = 4 \times 21^{\circ} = 84^{\circ}$ (vertically opp. $\angle s$] Again, $2c + a = 180^{\circ}$ [a linear pair] $\Rightarrow 2c + 84^{\circ} = 180^{\circ}$ $\Rightarrow 2c = 96^{\circ}$ $\Rightarrow c = 96^{\circ}2 = 48^{\circ}$ Hence, the values of a, b and c are $a = 84^{\circ}$, $b = 21^{\circ}$ and c $= 48^{\circ}$.



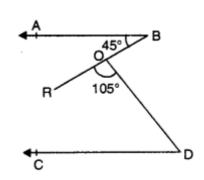
Question 5. In figure, if AB || CD. If $\angle ABR = 45^{\circ}$ and $\angle ROD = 105^{\circ}$, then find $\angle ODC$.

Solution:

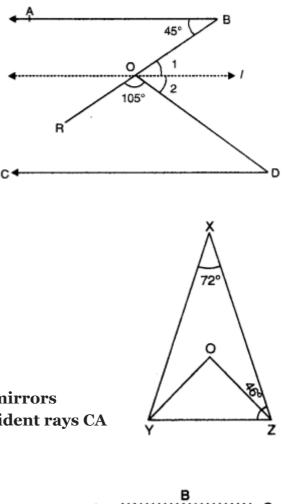
Through O, draw a line 'l' parallel to AB. \Rightarrow line I will also parallel to CD, then $\angle 1 = 45^{\circ}$ [alternate int. angles] $\angle 1 + \angle 2 + 105^{\circ} = 180^{\circ}$ [straight angle] $\angle 2 = 180^{\circ} - 105^{\circ} - 45^{\circ}$ $\Rightarrow \angle 2 = 30^{\circ}$ Now, $\angle ODC = \angle 2$ [alternate int. angles] $= \angle ODC = 30^{\circ}$

Question 6.

In the figure, $\angle X = 72^{\circ}$, $\angle XZY = 46^{\circ}$. If YO and ZO are bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OYZ$ and $\angle YOZ$.



Solution: In ΔXYZ , we have $\angle X + XY + \angle Z = 180^{\circ}$ $\Rightarrow \angle Y + \angle Z = 180^{\circ} - \angle X$ $\Rightarrow \angle Y + \angle Z = 180^{\circ} - 72^{\circ}$ \Rightarrow Y + \angle Z = 108° \Rightarrow 12 \angle Y + 12 \angle Z = 12 × 108° $\angle OYZ + \angle OZY = 54^{\circ}$ [\therefore YO and ZO are the bisector of \angle XYZ and $\angle XZY$] $\Rightarrow \angle OYZ + 12 \times 46^{\circ} = 54^{\circ}$ $\angle OYZ + 23^\circ = 54^\circ$ $\Rightarrow \angle OYZ = 549 - 23^{\circ} = 31^{\circ}$ In Δ YOZ, we have $\angle YOZ = 180^{\circ} - (\angle OYZ + \angle OZY)$ $= 180^{\circ} - (31^{\circ} + 23^{\circ}) 180^{\circ} - 54^{\circ} = 126^{\circ}$



Question 7.

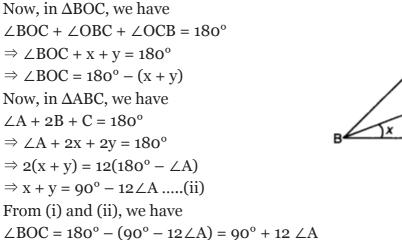
In the given figure, m and n are two plane mirrors perpendicular to each other. Show that incident rays CA is parallel to reflected ray BD.

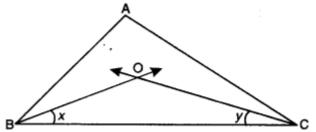
Solution: Let normals at A and B meet at P. As mirrors are perpendicular to each other, therefore, BP || OA and AP || OB. So, BP \perp PA i.e., \angle BPA = 90° Therefore, $\angle 3 + \angle 2 = 90^{\circ}$ [angle sum property] ...(i) Also, $\angle 1 = \angle 2$ and $\angle 4 = \angle 3$ [Angle of incidence = Angle of reflection] Therefore, $\angle 1 + \angle 4 = 90^{\circ}$ [from (i)) ...(ii] Adding (i) and (ii), we have $\angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$ i.e., $\angle CAB + \angle DBA = 180^{\circ}$ Hence, CA || BD

Ouestion 8

If in $\triangle ABC$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Prove that $\angle BOC = 90^{\circ} + 12 \angle A.$

Solution: Let $\angle B = 2x$ and $\angle C = 2y$ \bigcirc OB and OC bisect \angle B and \angle C respectively. $\angle OBC = 12 \angle B = 12 \times 2x = x$ and $\angle OCB = 12 \angle C = 12 \times 2y = y$

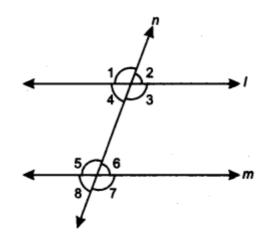




Question 9.

In figure, if I || m and $\angle 1 = (2x + y)^\circ$, $\angle 4 = (x + 2y)^\circ$ and $\angle 6 = (3y + 20)^\circ$. Find $\angle 7$ and $\angle 8$.

Solution: Here, $\angle 1$ and $\angle 4$ are forming a linear pair $\angle 1 + \angle 4 = 180^{\circ}$ $(2x + y)^{\circ} + (x + 2y)^{\circ} = 180^{\circ}$ $3(x + y)^{\circ} = 180^{\circ}$ x + y = 60Since I || m and n is a transversal $\angle 4 = \angle 6$ $(x + 2y)^{\circ} = (3y + 20)^{\circ}$ x - y = 20Adding (i) and (ii), we have 2x = 80 = x = 40From (i), we have $40 + y = 60 \Rightarrow y = 20$ Now, $\angle 1 = (2 \times 40 + 20)^\circ = 100^\circ$ $\angle 4 = (40 + 2 \times 20)^{\circ} = 80^{\circ}$ $\angle 8 = \angle 4 = 80^{\circ}$ [corresponding $\angle s$] $\angle 1 = \angle 3 = 100^{\circ}$ [vertically opp. $\angle s$] $\angle 7 = \angle 3 = 100^{\circ}$ [corresponding $\angle s$] Hence, $\angle 7 = 100^{\circ}$ and $\angle 8 = 80^{\circ}$



Question 10.

In the given figure, if PQ \perp PS, PQ || SR, \angle SQR = 280 and \angle QRT = 65°. Find the values of x, y and z.

Solution: Here, PQ || SR . $\Rightarrow \angle PQR = \angle QRT$ $\Rightarrow x + 28^{\circ} = 65^{\circ}$

$$\Rightarrow x = 65^{\circ} - 28^{\circ} = 37^{\circ}$$

Now, in it. Δ SPQ, $\angle P = 90^{\circ}$
 $\therefore \angle P + x + y = 180^{\circ}$ [angle sum property]
 $\therefore 90^{\circ} + 37^{\circ} + y = 180^{\circ}$
 $\Rightarrow y = 180^{\circ} - 90^{\circ} - 37^{\circ} = 53^{\circ}$
Now, \angle SRQ + \angle QRT = 180° [linear pair]
 $z + 65^{\circ} = 180^{\circ}$
 $z = 180^{\circ} - 65^{\circ} = 115^{\circ}$

