Chapter 7 Triangles Class 9 Important Questions NCERT Maths

Question 1. In the given figure, AD = BC and BD = AC, prove that $\angle DAB = \angle CBA$. Solution:

In Δ DAB and Δ CBA, we have AD = BC [given] BD = AC [given] AB = AB [common] $\therefore \Delta$ DAB $\cong \Delta$ CBA [by SSS congruence axiom] Thus, \angle DAB = \angle CBA [c.p.c.t.]

Question 2.

In the given figure, $\triangle ABD$ and ABCD are isosceles triangles on the same base BD. Prove that $\angle ABC = \angle ADC$. Solution:

In $\triangle ABD$, we have AB = AD (given) $\angle ABD = \angle ADB$ [angles opposite to equal sides are equal] ...(i) In $\triangle BCD$, we have CB = CD $\Rightarrow \angle CBD = \angle CDB$ [angles opposite to equal sides are equal] ... (ii) Adding (i) and (ii), we have $\angle ABD + \angle CBD = \angle ADB + \angle CDB$ $\Rightarrow \angle ABC = \angle ADC$

Question 3. In the given figure, if $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$, then prove that BC = CD. Solution:

In \triangle ABC and ACDA, we have $\angle 1 = \angle 2$ (given) AC = AC [common] $\angle 3 = \angle 4$ [given] So, by using ASA congruence axiom \triangle ABC $\cong \triangle$ CDA Since corresponding parts of congruent triangles are equal \therefore BC = CD

Question 4. In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Solution: Here, $\angle B < \angle A$ $\Rightarrow AO < BO \dots(i)$ and $\angle C < \angle D$ $\Rightarrow OD < CO \dots(ii)$ [\therefore side opposite to greater angle is longer] Adding (i) and (ii), we obtain AO + OD < BO + COAD < BC

Question 5. In the given figure, AC > AB and D is a point on AC such that AB = AD. Show that BC > CD. Solution:

Here, in $\triangle ABD$, AB = AD $\angle ABD = \angle ADB$ [$\angle s$ opp. to equal sides of a \triangle] In $\triangle BAD$ ext. $\angle BDC = \angle BAD + \angle ABD$ $\Rightarrow \angle BDC > \angle ABD \dots$ (ii) Also, in $\triangle BDC$. ext. $\angle ADB > \angle CBD \dots$ (iii) From (ii) and (iii), we have $\angle BDC > CD$ [\because sides opp. to greater angle is larger]

Question 6.

In a triangle ABC, D is the mid-point of side AC such that BD = 12 AC. Show that $\angle ABC$ is a right angle. Solution:

Here, in $\triangle ABC$, D is the mid-point of AC. \Rightarrow AD = CD = 12AC ...(i) Also, BD = 12AC... (ii) [given] From (i) and (ii), we obtain AD = BD and CD = BD $\Rightarrow \angle 2 = \angle 4$ and $\angle 1 = \angle 3$ (iii) In $\triangle ABC$, we have $\angle ABC + \angle ACB + \angle CAB = 180^{\circ}$ $\Rightarrow \angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$ $\Rightarrow \angle 1 + \angle 2 + \angle 1 + \angle 2 = 180^{\circ}$ [using (iii)]

 $\Rightarrow 2(\angle 1 + \angle 2) = 180^{\circ}$ $\Rightarrow \angle 1 + \angle 2 = 90^{\circ}$ Hence, $\angle ABC = 90^{\circ}$

Question 7. ABC is an isosceles triangle with AB = AC. P and Q are points on AB and AC respectively such that AP = AQ. Prove that CP = BQ. Solution:

In \triangle ABQ and \triangle ACP, we have AB = AC (given) \angle BAQ = \angle CAP [common] AQ = AP (given) \therefore By SAS congruence criteria, we have \triangle ABQ \cong \triangle ACP CP = BQ

Question 8.

In the given figure, $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC, AD is extended to intersect BC at P. Show that : (i) $\triangle ABD \cong \triangle ACD$ (ii) $\triangle ABP \cong \triangle ACP$

Solution: (i) In $\triangle ABD$ and $\triangle ACD$ AB = AC [given] BD = CD [given] AD = AD [common)] \therefore By SSS congruence axiom, we have $\triangle ABD \cong \triangle ACD$ (ii) In $\triangle ABP$ and $\triangle ACP$ AB = AC [given] $\angle BAP = \angle CAP$ [c.p.cit. as $\triangle ABD \cong \triangle ACD$] AP = AP [common] \therefore By SAS congruence axiom, we have $\triangle ABP \cong \triangle ACP$

Question 9. In the given figure, it is given that AE = AD and BD = CE. Prove that $\triangle AEB \cong \triangle ADC$.

Solution: We have AE = AD ... (i) and CE = BD ... (ii) On adding (i) and (ii), we have AE + CE = AD + BD

 $\Rightarrow AC = AB$ Now, in $\triangle AEB$ and $\triangle ADC$, we have AE = AD [given] AB = AC [proved above] $\angle A = \angle A$ [common] : By SAS congruence axiom, we have $\Delta AEB = \Delta ADC$

Question 10

в In the given figure, in $\triangle ABC$, $\angle B = 30^\circ$, $\angle C = 65^\circ$ and the bisector of ∠A meets BC in X. Arrange AX, BX and CX in ascending order of magnitude.

D